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Polarizable continuum models (PCMs) are a widely used family of implicit solvent models based
on reaction-field theory and boundary-element discretization of the solute/continuum interface. An
often overlooked aspect of these theories is that discretization of the interface typically does not af-
ford a continuous potential energy surface for the solute. In addition, we show that discretization can
lead to numerical singularities and violations of exact variational conditions. To fix these problems,
we introduce the switching/Gaussian (SWIG) method, a discretization scheme that overcomes several
longstanding problems with PCMs. Our approach generalizes a procedure introduced by York and
Karplus [J. Phys. Chem. A 103, 11060 (1999)], extending it beyond the conductor-like screening
model. Comparison to other purportedly smooth PCM implementations reveals certain artifacts in
these alternative approaches, which are avoided using the SWIG methodology. The versatility of our
approach is demonstrated via geometry optimizations, vibrational frequency calculations, and molec-
ular dynamics simulations, for solutes described using quantum mechanics and molecular mechanics.
© 2010 American Institute of Physics. [doi:10.1063/1.3511297]

I. INTRODUCTION

This work focuses on a particular class of reaction-field
models that are intended to describe a solute molecule im-
mersed in a structureless dielectric medium. The solute has
a charge distribution that might be calculated using quantum
chemistry, or taken from a molecular mechanics (MM) force
field, whereas the effects of the dielectric continuum, which is
polarized by the solute’s charge distribution, are represented
by a charge density, σpol(�s), at the surface of a cavity that
represents the solute/continuum boundary. Given the solute’s
charge density, ρ0(�r ), equations to define σpol(�s) are obtained
by approximate solution of Poisson’s equation, subject to cav-
ity boundary conditions. Various levels of approximation have
been reviewed recently,1, 2 and Chipman2–4 has shown how all
of these apparent surface charge (ASC) models can be cast
within a common conceptual and computational framework.
We adopt his notation as much as possible.

Nowadays, the ASC approach is virtually synonymous
with the term polarizable continuum model (PCM), and
encompasses such variants as the conductor-like model
[C-PCM,5 also known as GCOSMO (Refs. 6 and 7)] as well
as the integral equation formalism (IEF-PCM),8–10 which is
also known by the acronym SS(V)PE (surface and simula-
tion of volume polarization for electrostatics).3 The IEF-PCM
and SS(V)PE methods are formally equivalent in their integral
equation formulations.11 The SS(V)PE approach provides an
exact solution for the ASC arising from the charge density
within the solute cavity, and an approximate solution for the
volume polarization due to the “escaped charge,” i.e., that part
of ρ0 that penetrates beyond the solute cavity.

For ASC models, one must specify a surface that defines
the continuum boundary. When the solute is described us-
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ing quantum chemistry, a conceptually appealing choice is
to use an isodensity contour, ρ0(�s) = constant,4, 12 but this
choice significantly complicates the formulation of analytic
energy gradients. More often, the cavity is constructed from
atom-centered (or functional-group-centered) spheres, whose
radii might be related to atomic van der Waals (vdW) radii, or
might simply be taken as empirical parameters in the model.
With carefully parameterized united-atom radii, solvation free
energies calculated using this simple prescription may actu-
ally be more accurate than those obtained from an isodensity
construction.13, 14

The difficulty with all of these approaches, and the focus
of the present work, lies in the discretization of the cavity sur-
face into a finite set of surface elements, within which σpol(�s)
is assumed to be constant. Thus, σpol(�s) is approximated us-
ing a finite set of surface grid points, �si , each with a surface
area ai , and σpol(�s) is replaced by a set of charges, qi , located
at these grid points. Given such a formulation, the potential
energy surface of the solute molecule is inherently discon-
tinuous, because the number of surface grid points changes
discontinuously as a function of molecular geometry, with
certain points disappearing into the solute cavity and oth-
ers emerging from the cavity, onto the surface. These dis-
continuities hinder geometry optimizations, or prevent them
from converging at all, introduce artifacts into vibrational fre-
quency calculations, and pose problems for energy conserva-
tion in molecular dynamics simulations.15

Several schemes have been introduced to alleviate this
problem,15, 16, 18–21 although none appears to be in widespread
use at the present time. These methods differ in their details,
but the unifying idea is to introduce a switching function that
smoothly attenuates the contribution of a given surface ele-
ment as it passes into the interior of the solute cavity. We have
recently shown, however, that this is insufficient to produce a
potential energy surface that is “smooth enough” for many
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chemical applications, even if it is rigorously smooth in the
mathematical sense of possessing continuous derivatives.15

We find that the details of the potential surface are extremely
sensitive to the balance between the switching function and
the singular Coulomb potentials of the point charges that rep-
resent σpol; naïve adoption of a switching function may lead
to spurious oscillations in the energy or gradient.15

A more sophisticated smoothing approach is that pio-
neered by York and Karplus (YK),16 who represent σpol us-
ing spherical Gaussian charges, thereby eliminating the singu-
larity in the Coulomb potential. The present work represents
a generalization of the YK scheme that we call the switch-
ing/Gaussian (SWIG) method. Whereas YK consider only the
conductor-like screening model (COSMO),17 our formulation
is applicable to all ASC PCMs. A preliminary version of this
work was reported in Ref. 15, and here we present a slightly
modified version that is more faithful to the underlying in-
tegral equation theory. In addition, the present work provides
additional details of the implementation, and a more thorough
battery of tests and exemplary applications. Subsequent to our
initial report,15 a similar approach was reported by Scalmani
and Frisch,21 who refer to their implementation as the contin-
uous surface charge (CSC) approach, a terminology that we
shall adopt to refer to their implementation. The CSC method
also attempts to generalize the YK approach, but differs in
important details from the methodology presented here.

We will show that the SWIG approach possesses three
critically important features: (i) it yields potential energy sur-
faces that are rigorously smooth, and also free of unwanted
oscillations in the energy, the energy gradient, and the cavity
surface area; (ii) the matrix formulation of SWIG is free of the
singularities that pervade other smooth PCM formulations;
and (iii) the SWIG discretization is faithful to the accuracy of
the underlying integral equation theory, i.e., it does not greatly
perturb the energetics. We believe that this is the first PCM
discretization scheme to possess all three of these important
properties.

The outline of this paper is as follows. In Sec. II, we
review the fundamental reaction-field equations that lead
to the general discretized PCM equations as formulated by
Chipman.3 The SWIG formalism is presented in Sec. III, and
in Sec. IV we analyze this approach in comparison with other
discretization methods, pointing out several hitherto unno-
ticed problems with existing methods, including nonvaria-
tional solvation energies. In Sec. V, we present numerical re-
sults using both the C-PCM and SS(V)PE solvation models.
In some cases the solute is described using an MM force field,
while in other examples the solute is described using quantum
mechanics, at the level of self-consistent field (SCF) theory.
In Sec. VI we demonstrate the versatility and robustness of
the SWIG discretization procedure with applications involv-
ing geometry optimization, calculation of vibrational spectra,
and molecular dynamics simulations.

II. REACTION-FIELD THEORY

In this section, we present an overview of the PCM
reaction-field formalism for the solute–continuum electro-

static interactions, then show how the resulting integral equa-
tions are discretized for numerical solution.

Nonelectrostatic interactions such as dispersion, repul-
sion, or cavitation are sometimes grafted onto ASC PCMs,1

but will not be discussed here, except to note that the com-
monly used expressions for these interactions are functions
of the total surface area of the cavity.22, 23 As such, the con-
tinuity and smoothness of these nonelectrostatic interaction
terms depends upon ensuring that the cavity surface area is a
smooth function of the solute geometry. We have considered
nonelectrostatic interactions in previous work,15 and found
that the SWIG discretization suppresses spurious oscillations
in the cavity surface area, which are sometimes observed us-
ing other smooth discretization schemes.

A. Electrostatic interactions

We begin by considering the electrostatic interactions of
an arbitrary charge density embedded in a linear isotropic di-
electric medium. We separate the total charge density into two
components,

ρtot(�r ) = ρ0(�r ) + ρpol(�r ), (2.1)

where ρ0 is the solute’s charge density in the absence of the
dielectric and ρpol is the density of bound charges that arises
from polarization of the dielectric by the electric field due to
ρ0. Similarly, the total electrostatic potential is decomposed
according to

φtot(�r ) = φ0(�r ) + φpol(�r ). (2.2)

The quantity φpol is called the reaction-field potential, and
originates with the charge distribution ρpol that is induced by
the “reaction” of the dielectric in response to φ0, the field
due to ρ0.24 Such a response corresponds to displacement of
bound charges within the dielectric, implying that a certain
amount of work, wdispl, is required to induce ρpol.

The total electrostatic energy of the solute + continuum
supersystem, W , is equal to the electrostatic interaction en-
ergy of the solute’s charge density with the polarized dielec-
tric, plus the work required to displace the bound charges. We
denote the latter quantity by wdispl, and therefore

W = wdispl + 1

2

∫
ρtot(�r )φtot(�r ) d3�r . (2.3)

This energy can be separated into two components,

W = E0 + Epol, (2.4)

where E0 is the electrostatic self-energy associated with ρ0,

E0 = 1

2

∫
ρ0(�r )φ0(�r ) d3�r . (2.5)

The other component of W is the electrostatic solvation
energy,

Epol = 1

2

∫
ρ0(�r )φpol(�r ) d3�r

+ 1

2

∫
ρpol(�r )φ0(�r )d3�r

+ 1

2

∫
ρpol(�r )φpol(�r )d3�r + wdispl. (2.6)
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The last two terms in this equation constitute the total work
of inducing ρpol.

The appropriate microscopic expression for wdispl is not
immediately obvious. However, by virtue of conservation of
energy, the total work to induce ρpol must be equal and oppo-
site to the energy gained by the dielectric in the interaction of
ρpol with φ0:

−1

2

∫
ρpol(�r )φ0(�r )d3�r

= 1

2

∫
ρpol(�r )φpol(�r)d3�r + wdispl. (2.7)

This relation implies that wdispl can be cast in terms of the
electrostatic interactions between the solute and polarization
charges. In addition, it leads to the usual condensed expres-
sion for the electrostatic solvation energy,25

Epol = 1

2

∫
ρ0(�r )φpol(�r )d3�r . (2.8)

This equation suggests that Epol can be determined without
explicit knowledge of wdispl, although we show in Appendix A
that explicit expressions for wdispl can be derived for various
PCMs.

In ASC PCM methods, it is assumed that ρ0 occupies a
cavity within the dielectric, and that ρpol can be recast into
an apparent charge density, σpol, that resides entirely on the
two-dimensional cavity surface. This surface charge density
approximates the electrostatic potential due to ρpol:∫

σpol(�s)

|�r − �s| d2�s ≈ φpol(�r ). (2.9)

Given this approximation, and replacing ρpol(�r ) with
σpol(�s)δ(�r − �s) in Eq. (2.6), the electrostatic solvation energy
can be rewritten entirely in terms of surface integrals,

Epol = wdispl +
∫

σpol(�s)φ0(�s) d2�s

+ 1

2

∫
σpol(�s)Ŝσpol(�s)d2�s. (2.10)

The integral operator Ŝ in this equation is defined such that
Ŝσpol(�s) = φpol(�s); see Appendix A for details. In deriving
Eq. (2.10), we have used the identity∫

ρ0(�r )φpol(�r)d3�r =
∫

ρpol(�r)φ0(�r)d3�r , (2.11)

which follows from the symmetry of the Coulomb interaction.
As an alternative to Eq. (2.10), Epol can be written in the

more traditional form

Epol = 1

2

∫
σpol(�s)φ0(�s)d2�s, (2.12)

using Eqs. (2.8) and (2.11). According to Eq. (2.12), calcu-
lation of Epol is reduced to computation of σpol, which is the
hallmark of ASC PCMs.

If ρ0 is a polarizable charge density, as it is in quantum-
mechanical (QM) calculations, then σpol may polarize and
therefore modify ρ0, which in turn modifies σpol. In such
cases, one must solve for E0 and Epol self-consistently,

by incorporating the polarization charge σpol into the SCF
iterations.

B. Variational conditions

While Eq. (2.12) is convenient for computing the solva-
tion energy, it is not very useful in deriving variational con-
ditions for PCMs, because it masks the full functional depen-
dence of Epol [cf. Eq. (2.10)]. Here, we consider variation of
Eq. (2.10).

In order for the total energy, W , to be a stationary point
that is minimized with respect to variation of the surface
charge density, the following relationship must hold:

0 = δW

δσpol(�s)

= φ0(�s) + Ŝσpol(�s) + δwdispl

δσpol(�s)
. (2.13)

To ensure that W is in fact minimized with respect to variation
of σpol, we require that

δ2W

δσpol(�s)δσpol(�s ′)
= Ŝ + δ2wdispl

δσpol(�s)δσpol(�s ′)
(2.14)

is a positive-definite operator.
From Eq. (2.13), one obtains

− φ0(�s) = Ŝσpol(�s) + δwdispl

δσpol(�s)
, (2.15)

which provides an equation relating φ0 at the cavity surface
to the apparent surface charge. As shown in Appendix A,
Eq. (2.15) is a general equation that can be used to solve for
σpol in PCM methods.

C. Discretization

The analytical formulation of reaction-field theory pre-
sented above can be solved exactly only in special cases,
such as the Born ion model.26 In order to apply reaction field
theory to arbitrary charge densities and cavity shapes, the
analytical formulation must be discretized and solved numer-
ically. In this section we review how solute cavities are con-
structed and how the integral equations are transformed into
finite-dimensional matrix equations.

1. Cavity shape

The first step in discretization is to define the shape of
the cavity that defines the solute/continuum interface. Cavity
shape is not unambiguous and certain shapes may be well-
suited for some applications but not for others. Various ap-
proaches have been devised to construct cavities,1 ranging
from a single sphere that encompasses the entire solute, to a
more realistic shape consisting of a union of spheres centered
at each solute nucleus.

Typically, a set of atomic van der Waals radii, such
as those deduced from crystallographic data by Bondi,27 is
used to define the spheres for each solute atom, although
united-atom approaches have also been proposed.13 A surface
composed of such spheres is called a vdW surface. The



244111-4 A. W. Lange and J. M. Herbert J. Chem. Phys. 133, 244111 (2010)

vdW surface may exhibit crevices where finite-size solvent
molecules should not be able to penetrate, hence the radii of
the spheres are often augmented by adding a solvent probe
radius to the vdW surface, resulting in a so-called solvent ac-
cessible surface (SAS).1 Alternatively, the vdW radii might
simply be scaled by a factor, typically 1.2,17, 28 to mimic the
same effect. Another common choice is the solvent exclud-
ing surface (SES), also known as a Connolly surface,29 which
smooths over the cusps of intersecting spheres in the vdW or
SAS surface, by adding additional surface points. It has been
noted,21 however, that certain algorithms for constructing the
SES are inherently discontinuous, owing to the introduction
of extra surface points. For this reason, we consider only SAS
and vdW surfaces.

2. Cavity surface grid

With a cavity shape in hand, the next step is to di-
vide the continuous surface into a grid of surface elements
centered at points �si , with corresponding surface areas ai .
The most commonly used prescriptions are the Geometria
Polihedro (GEPOL) algorithm30 and Lebedev quadrature.31

GEPOL uses a regular 60-sided polyhedron to approximate
a sphere, with surface elements that are triangles with areas
ãi = 4π R2/60, for a sphere of radius R. (More advanced ex-
tensions of the GEPOL grid have also been used.32) The geo-
metric gradients of ãi with respect to the nuclear coordinates
are quite complicated,32 however, and we therefore use Lebe-
dev grids exclusively, in order to simplify the formulation of
analytic energy gradients. Lebedev grids, which are used al-
most universally to perform the numerical integration steps
in density-functional theory calculations, are spherical grids
having octahedral symmetry, with quadrature weights wi that
are formulated to provide exact integrals for spherical har-
monics, Ylm , up to a given value of l.31 When a Lebedev grid
is used to discretize a sphere of radius R, the individual sur-
face elements have areas

ãi = wi R2. (2.16)

The trouble with these discretization procedures is that
surface elements will emerge from and/or vanish into the
interior of the cavity as the solute nuclei move. As a re-
sult, both Epol and the cavity surface area are discontinu-
ous functions of the coordinates of the nuclei. Historically,
this issue has been largely ignored, although several groups
have recently worked on methods designed to ameliorate the
discontinuities.15, 16, 19–21 Common to all of these methods is
the introduction of a geometry-dependent switching function,
Fi , for each surface element, such that the area of the i th sur-
face element is

ai = ãi Fi , (2.17)

where 0 ≤ Fi ≤ 1.

3. Electrostatic energy

The fundamental assumption of the discretization proce-
dure is that the electrostatic environment (φ0, σpol, etc.) varies

TABLE I. Definitions of the matrices in Eq. (2.18), for the PCMs consid-
ered here. The matrix A is diagonal and consists of the surface element areas,
ai , while the matrices S and D are defined in the text. The quantity ε repre-
sents the dielectric constant of the medium.

Method Matrix K Matrix R

C-PCM S −
(

ε − 1

ε

)
I

SS(V)PE S −
(

ε − 1

ε + 1

) (
1

4π

)
(DAS + SAD†) −

(
ε − 1

ε + 1

)
(

I − 1

2π
DA

)

slowly within each surface element,4 so that σpol(�s) may be
assumed to be constant over a given area, ai . Naturally, this
approximation improves as the density of the surface grid in-
creases and the individual areas become small. Discretization
converts the surface charge density, σpol(�s), into a vector q,
whose elements qi are the surface charges for the various
surface area elements. In most PCM implementations, qi is
treated as a point charge located at �si . Likewise, φ0(�s) is given
by a vector v, where vi = φ0(�si ).

Chipman and Dupuis4 have shown that discretization of
the cavity surface results in a set of linear equations,

Kq = Rv, (2.18)

that determine the vector q. The matrices K and R depend
upon the particular PCM, and are written in terms of two other
matrices, S and D, that are discussed in Sec. III A and in Ap-
pendix A. The forms of K and R for C-PCM and SS(V)PE
are listed in Table I.

Some remarks about terminology should be made at this
point. Although the IEF-PCM and SS(V)PE models are for-
mally equivalent, at the level of integral equations,11 dis-
cretization fails to preserve the equality DAS = SAD† [cf.
Eq. (A3) in Appendix A].3 As such, one can envisage vari-
ous asymmetric forms of K, or a symmetrized version that
employs (DAS + SAD†)/2. Authors who use the term “IEF-
PCM” have generally employed an asymmetric form of K,8–10

whereas Chipman uses the notation “SS(V)PE” for the sym-
metric variant.3 In the present work, we use only the symmet-
ric from of K, hence we refer to this method as SS(V)PE. (In
future work, we plan to compare the symmetric and asym-
metric forms of K.) For brevity, we use the term C-PCM to
refer to the conductor-like model, noting that it is completely
equivalent to the model known as GCOSMO.

Returning to Eq. (2.18), we can express this equation in
the alternative form

q = Qv, (2.19)

where Q = K−1R is often called the response matrix, since
the action of Q on v affords the surface charges q that are in-
duced in response to the electrostatic potential, v. Formally,
computation of q requires inversion of K, although itera-
tive algorithms that avoid matrix diagonalization have been
developed.33 Upon discretizing the integral that defines Epol

in Eq. (2.12), one can express the electrostatic solvation en-
ergy in a variety of equivalent forms:

Epol = 1
2 q†v = 1

2 q†Q−1q = 1
2 v†Qv. (2.20)
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The total energy is then

W = E0 + 1
2 q†v. (2.21)

The variational principle analogous to Eq. (2.13) is

0 = ∂W

∂q† = v − Q−1q, (2.22)

which is equivalent to Eq. (2.19). However, the derivation of
Eq. (2.22) assumes that Q† = Q, which is true within C-PCM
but not for SS(V)PE. Fortunately, Epol is invariant to the fol-
lowing symmetrization:

Epol = 1
4 v†[K−1R + R†(K†)−1]v. (2.23)

As such, we may replace Q in the energy expressions with a
symmetric matrix

Q̃ = 1
2

(
Q + Q†) . (2.24)

This symmetrization is crucial for efficient evaluation of en-
ergy gradients.

To ensure that W is minimized by the induced surface
charges q, let us compute the second variation of W with re-
spect to q. Using Eq. (2.22), one obtains

∂2W

∂q†q
= −Q−1. (2.25)

It follows that in order for W to be a local minimum, the
matrix −Q−1 must be positive-definite, hence Q must be
negative-definite. If so, then it follows from Eq. (2.20) that
Epol < 0 for any v and any q. The physical implication of this
result is that the reaction field always lowers the total energy.
We will revisit this important point in Sec. IV, in regard to the
choice of matrix elements for the smooth version of SS(V)PE.

4. Electrostatic gradients

PCM analytic energy gradients have been reported
previously,34–38 but we briefly summarize the formalism here,
in order to make contact with the reaction-field formalism pre-
sented above. Differentiating the total energy with respect to
a perturbation, x , and using the notation W x = ∂W/∂x , we
have

W x = E x
0 + E x

pol. (2.26)

The quantity E x
0 is simply the gas-phase gradient of the so-

lute, computed using a density matrix that is converged in
the presence of the reaction field. The polarization energy
gradient is

E x
pol = 1

2 [(v†)x Qv + v†Qx v + v†Qvx ]. (2.27)

The first and third terms on the right are equivalent if Q is
symmetric, but as indicated above, we may replace Q in this
expression with the symmetric matrix Q̃ from Eq. (2.24). This
is required in order to avoid the appearance of the density
matrix derivative, the calculation of which would require so-
lution of coupled-perturbed equations.39 To avoid this costly
endeavor, it is necessary to perform the symmetrization of
Q in Eq. (2.24) or, alternatively, to calculate two sets of
charges, q′ = Qv and q′′ = Q†v. Combining the two sets as

TABLE II. Gradients of the matrices in Table I, for the two PCMs consid-
ered here. For brevity, we have defined Mx = Dx AS + DAx S + DASx .

Method Matrix Kx Matrix Rx

C-PCM Sx 0

SS(V)PE Sx −
(

ε − 1

ε + 1

) (
1

4π

) [
Mx + (Mx )†

] (
ε − 1

ε + 1

)
(

1

2π

) (
Dx A + DAx )

q = 1
2 (q′ + q′′) is equivalent to performing the symmetriza-

tion of Eq. (2.24).
Using Eq. (2.23) we can rewrite E x

pol as

E x
pol = 1

2 v†(K−1R)x v + qvx . (2.28)

The physical interpretation of this equation is that the surface
charges experience the full electric field of the solute but only
half that of the surface charge density, a consequence of the
work required to induce the cavity surface charge. The second
term on the right in Eq. (2.28) is straightforward to compute,
since q must be computed anyway in order to obtain Epol, and
vx is simply the electric field at a given surface grid point, a
standard quantity at both MM and QM levels of theory. The
remaining term in E x

pol can be rearranged and simplified into
a general form for all PCMs:

v†(K−1R)x v = v†K−1(Rx − Kx K−1R)v. (2.29)

Further manipulation of this term requires us to choose a par-
ticular PCM. Expressions for Kx and Rx for both C-PCM and
SS(V)PE are provided in Table II.

III. THE SWITCHING/GAUSSIAN METHOD FOR
CAVITY DISCRETIZATION

We now come to the main topic of this work: the switch-
ing/Gaussian (SWIG) cavity discretization procedure.

A. Surface charge representation and matrix elements

An important distinction between various cavity dis-
cretization methods is the manner in which the surface charge
density, σpol(�s), is represented, leading to different definitions
of the matrices S and D upon which K and R depend (see
Table I). The matrices S and D are the discrete forms of cer-
tain integral operators, Ŝ and D̂, that act on σpol(�s),1, 2, 40 and
which are briefly reviewed in Appendix A. In discrete form,
the action of S on q produces the electrostatic potential due
to q, evaluated at the set of points {�si }. The action of D on
q produces the surface-dipole (double-layer) potential,3 again
evaluated at the points {�si }. The action of D† on q affords the
surface normal component of the electric field. Multiplying
by the area ai for each surface point provides an approximate
normal electric field over the i th surface element, and a com-
pact notation is obtained by introducing a diagonal matrix, A,
with elements Ai j = aiδi j (see Table I).

The matrix elements of S and D are derived from the
Coulomb operator between surface charges, and thus de-
pend upon how this surface charge is represented. The most
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common choice is to use point charges qi located at the
discretization points �si , but following YK,16 we will
represent σpol(�s) using spherical Gaussians centered at the
points �si :

gi (�r ) = qi
(
ζ 2

i /π
)3/2

exp
( − ζ 2

i |�r − �si |2
)
. (3.1)

The amplitude qi in this equation is precisely the charge that
appears in the vector q, and the exponent ζi is allowed to de-
pend upon the surface area of the i th surface element. Specif-
ically, if we denote the radius of the I th atomic sphere by
RI , then for a Lebedev quadrature point i ∈ I located on this
sphere, the Gaussian exponent, ζi , is chosen to be16

ζi = ζ

RI
√

wi
. (3.2)

Here, ζ is a width parameter that is optimized, for each par-
ticular Lebedev grid, in order to reproduce the Born sol-
vation energy of a conductor and a uniform surface charge
distribution.16, 41 (Numerical values of ζ are taken from
Ref. 16.)

The Gaussian charge basis eliminates the Coulomb sin-
gularity present in point charge interactions, so that the sur-
face charge interactions remain finite at all geometries. This
is important, as we have found that the use of a switching
function can exacerbate problems with singularities in the
PCM equations, by allowing surface grid points to approach
more closely than they would in standard (discontinuous) dis-
cretization schemes.15

Having selected a representation for the surface charge,
the off-diagonal matrix elements of S and D follow quite read-
ily. The off-diagonal element Si j is simply the Coulomb inter-
action between gi and g j , which can be evaluated analytically.
The result is

Si j = erf(ζi j ri j )

ri j
, (3.3)

where ri j = |�ri − �r j | and ζi j = ζiζ j/(ζ 2
i + ζ 2

j )1/2. The off-
diagonal element Di j is related to Si j according to the
relation1

Di j = �n j ·∂Si j

∂�r j
, (3.4)

where �n j is the outward pointing unit vector normal to the
cavity surface, at the point �s j . Using Eqs. (3.3) and (3.4), we
obtain

Di j =
(

erf(ζi j ri j ) − 2ζi j ri j√
π

e−ζ 2
i j r

2
i j

) �n j ·�ri j

r3
i j

, (3.5)

where �ri j = �ri − �r j .
The diagonal matrix elements Sii and Dii , which are

termed the self-potential and the self-field interactions,
respectively,21 are not straightforward to define because they
involve Coulomb interactions within a discretized surface el-
ement. At the same time, these self-interactions turn out to
be critically important to obtaining a smooth potential en-
ergy surface as well as solvation energies that are faithful to
the integral equation PCM theory. Because Gaussian charges
eliminate the singularity in the Coulomb potential, an obvi-
ous choice for the self-potential interaction is based upon the
observation that

lim
ri j →0

erf(ζi i ri j )

ri j
= ζi

√
2/π. (3.6)

We use this limit to define Sii . To ensure smoothness, how-
ever, Sii must be scaled by the inverse of the switching func-
tion Fi , consistent with the original YK prescription.16 Thus,
we define

Sii = ζi
√

2/π

Fi
. (3.7)

The precise nature of the switching function is discussed in
Sec. III B. For now, it suffices to note that the presence of Fi

in the denominator of Sii ensures continuity of the potential
surface, as shown in Appendix B.

The quantity Dii is related to the interaction of σpol(�si )
with its own normal electric field component, and the prod-
uct Dii ai gives the total interaction over the entire area ai .
In our previous work,15 we noted that limri j →0 Di j = 0, and
used this as justification to set Dii = 0. While this choice
is certainly valid in the limit that ai → 0, in practice it
tends to degrade the accuracy of solvation energies,37 and
our subsequent experience has shown that smooth PCMs
with Dii = 0 cannot reproduce Born ion solvation energies
across a range of dielectric constants. In the present work, we
define

Dii = −ζi
√

2/π

2RI
, (3.8)

where RI is the radius of the atomic sphere on which the
point �si resides. This choice is based upon the definition
Dii = Sii/2RI from Ref. 9. We find that this approach does
reproduce Born-ion solvation energies

Having defined S and D, the analytic gradients for SWIG

can be derived by taking the gradient of the matrix elements
with respect to the M th solute nucleus. For Si j with i 	= j , we
obtain

∇̂M Si j = −
(

erf(ζi j ri j ) − 2ζi j ri j√
π

e−ζ 2
i j r

2
i j

) ∇̂Mri j

r2
i j

, (3.9)

whereas

∇̂M Sii = −ζi
√

2/π

F2
i

∇̂M Fi . (3.10)

The switching function gradient, ∇̂M Fi , is given in
Appendix C. For the diagonal elements of D, we have

∇̂M Dii = 0, (3.11)

whereas for i 	= j we obtain

∇̂M Di j =
(

4r2
i jζ

3
i√

π
e−r2

i j ζ
2
i

)
�n j ·�ri j

r3
i j

∇̂Mri j

−
(

erf(ζi j ri j ) − 2ζi j ri j√
π

e−ζ 2
i j r

2
i j

)

×
(

�n j (δ j M − δi M )

r3
i j

+ 3�n j ·�ri j

r4
i j

∇̂Mri j

)
. (3.12)

An equivalent form of Eq. (3.12) was given in Ref. 15.
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The quantity ∇̂Mri j , which appears in both Eqs. (3.9) and
(3.12), vanishes unless either i ∈ M or j ∈ M . We can ex-
press this derivative as

∇̂Mri j = �ri − �r j

ri j
(δi M − δ j M ), (3.13)

where δi M = 1 if i ∈ M , else δi M = 0.

B. Switching functions

We have already introduced a dimensionless switching
function, Fi , for the i th discretization point, although its pre-
cise form has not yet been specified. The function Fi should
smoothly attenuate the i th surface point’s contribution to the
solvation energy, as �si passes into or out of the cavity. The cav-
ity consists of a union of spheres centered at points {�rJ }, and a
reasonable ansatz for Fi is a product of elementary switching
functions,15, 16

Fi =
atoms∏
J,i /∈J

f (�si , �rJ ). (3.14)

The elementary switching functions, f (�si , �rJ ), should
vary smoothly and monotonically between zero and one.
Equation (3.14) ensures that Fi depends upon the nuclear co-
ordinates of the entire solute molecule, and will be zero if
even a single f (�si , �rJ ) = 0. In practice, we set f (�si , �rJ ) to zero
whenever this function drops below 10−8. In our experience,
this does not produce any numerically detectable discontinu-
ities.

There are probably many different choices for the func-
tion f that would work in this context; we will describe two
choices that we have found to work well in practice. The first
of these, originally proposed by YK,16 is based upon defini-
tion of a switching region around each atomic sphere. Using
Rsw,J to denote the width of the switching region around the
J th atom, the inner and outer boundaries of the switching re-
gion for atom J are defined by radii

Rin,J = RJ − αJ Rsw,J (3.15)

and

Rout,J = RJ + (1 − αJ )Rsw,J , (3.16)

respectively, where αJ is an adjustable parameter (0 < αJ

< 1). The definitions of the parameters αJ and Rsw,J depend
upon RJ and also the number of Lebedev grid points used
to discretize the J th sphere; these definitions, which we take
from Ref. 16, are provided in the supporting information.42

The extent to which the i th grid point penetrates into the
switching region surrounding the J th sphere is measured us-
ing the dimensionless quantity

di J = |�si − �rJ | − Rin,J

Rsw,J
. (3.17)

The elementary switching function used by YK is then given
by

f (�si , �rJ ) = h(di J ), (3.18)

where

h(x) =
⎧⎨⎩

0 x < 0
x3(10 − 15x + x2) 0 ≤ x ≤ 1
1 x > 1

. (3.19)

In later work, York and co-workers43 replaced Fi in
Eq. (3.14) with F p

i , where the exponent p was taken to be
an additional adjustable parameter. However, we have demon-
strated that values of p 	= 1 can lead to unwanted oscillations
in the energy gradient,15 so we take p = 1 throughout this
work.

The switching function defined above is certainly not
unique, and even within this ansatz, parameters such as Rsw,J

and αJ are not unique either. York and co-workers16, 43 have
presented some arguments in favor of simple formulas that
define these parameters, and we have adopted these defini-
tions because they produce good results in a variety of tests.
It is likely that a somewhat different switching function could
be found that, in conjunction with Gaussian surface charges,
also affords good results.

To this end, we have explored some alternative switching
functions, to make comparison and perhaps to diminish some
of the arbitrariness in this aspect of the SWIG method. One
such alternative is to exploit the spatial extent of the spherical
Gaussian charges to determine the penetration of a surface
element into the cavity. The idea is to compute the fraction of
the Gaussian charge distribution gi that exists inside of the J th
sphere. Restricting ourselves to one dimension for simplicity,
we obtain the resulting elementary switching function

f (�si , �rJ ) = 1 − 1
2 {erf[ζi (RJ − ri J )]

+ erf[ζi (RJ + ri J )]}, (3.20)

where RJ is the radius of the J th sphere and ri J = |�si − �rJ |.
The term in curly braces measures how much normalized
charge density exists inside the J th sphere. Thus, f (�si , �rJ )
= 0 when the i th Gaussian is contained entirely within the
J th sphere. To distinguish between the elementary switch-
ing function in Eq. (3.18), versus that defined in Eq. (3.20),
we henceforth refer to the latter approach as the improved
SWIG (ISWIG) method, whereas “SWIG” will imply that the
YK switching function in Eq. (3.18) is used. In all other re-
spects, the two methods are identical.

A potential advantage of ISWIG is that it accounts for
differences in the relative extents of the Gaussian charges,
whereas the SWIG approach uses a switching function that
is independent of the Gaussian exponents, ζi . Using ISWIG,
a Gaussian charge with a small width will be rapidly attenu-
ated as it penetrates into an atomic sphere, whereas SWIG will
attenuate this charge more slowly, if the switching region is
large relative to the Gaussian charge width. ISWIG should also
avoid situations in which a broad Gaussian charge is centered
just outside of a switching region, with a substantial amount
of its charge distribution inside the cavity, yet is fully switched
on. On the other hand, the SWIG switching function is some-
what more efficient computationally, since its switching re-
gions extend over a fairly narrow region around each atomic
sphere. In numerical tests performed so far, both SWIG and
ISWIG afford similar results.
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IV. COMPARISON TO OTHER DISCRETIZATION
METHODS

We next compare and contrast our discretization methods
to two others that have recently been proposed as solutions
to the PCM discontinuity problem, namely, the fixed points
with variable areas (FIXPVA) method of Su and Li,20 and
the continuous surface charge (CSC) method of Scalmani and
Frisch.21 All three of these methods claim to yield smooth
potential energy surfaces through the use of a switching func-
tion, yet there exist subtle but important differences between
them.

A. Continuity

Matrix elements for the FIXPVA and CSC methods are
given in Table III. Of these two approaches, CSC is more
similar to SWIG, and in fact uses the same off-diagonal ele-
ments Si j and Di j , in conjunction with Gaussian charges, and
the same switching function as that defined in Eq. (3.18). The
FIXPVA approach uses point charges, and this choice neces-
sitates the use of an alternative switching function,20 as close
approach of these point charges must be avoided.

The switching function does not appear explicitly in the
matrix elements Sii for the FIXPVA and CSC methods, but
is instead folded into the areas ai . However, we can cast
the SWIG expression for Sii [Eq. (3.7)] into something that
more closely resembles the expressions in Table III by using
Eq. (3.2) to relate ζi to ai = wi R2

I Fi :

Sii = ζ

√
2

πai Fi
. (4.1)

Thus, SWIG, CSC, and FIXPVA all attenuate surface points
via the diagonal of S, and in Appendix B we show that this
is sufficient to obtain a smooth potential energy surface. As
such, all three methods afford potential energy surfaces that
are smooth, in the mathematical sense.

TABLE III. Matrix elements of S and D for the FIXPVA and CSC methods.
In Ref. 21, the CSC matrix elements are defined for spheres of unit radius, but
we have generalized them here to arbitrary areas, ai . We have also general-
ized the FIXPVA approach of Ref. 20 for use with SS(V)PE, as described in
the text. In the expressions for Sii , RI is the radius of the I th sphere (i ∈ I ),
and the constant CS is a self-energy factor that depends upon the choice of
surface grid: CS = 1.0694 for GEPOL grids (Ref. 37) and CS = 1.104 for
Lebedev grids (Ref. 44).

Matrix FIXPVA CSC
element value value

Si j 1/ri j erf(ζi j ri j )/ri j

Sii CS

√
4π

ai

(
4π RI −

∑
j 	=i

Si j a j

)/
ai

Di j �n j ·�ri j /r3
i j

(
erf(ζi j ri j ) − 2ζi j ri j√

π
e−ζ 2

i j r2
i j

) �n j ·�ri j

r3
i j

Dii −
(

2π +
∑
j 	=i

Di j a j

)/
ai −

(
2π +

∑
j 	=i

Di j a j

)/
ai

B. Sum rules

As compared to the off-diagonal elements of S and D,
formulation of the self-energy and self-field within a given
surface element, and therefore the diagonal matrix elements
Sii and Dii , is less straightforward. Traditionally, Dii has been
defined using a sum rule,

Dii = − 1

ai

(
2π +

∑
j 	=i

Di j a j

)
, (4.2)

which avoids the need to determine Dii by ill-conditioned
numerical integration over the i th surface element, and fur-
thermore provides more accurate energetics than simply set-
ting Dii = 0.37, 45 This sum rule was originally derived by
Purisima and Nilar,46 starting from the discretized expression
for D̂,∑

j

∫
(�r j − �ri ) · �n j

r3
i j

d2�s j = −
∑

j

Di j a j . (4.3)

These authors recognized that the integrals appearing in
Eq. (4.3) could be rewritten as a solid angle integral over each
surface element, from which it follows that

−
∑

j

Di j a j =
∑

j

∫
d� j = 2π. (4.4)

Here, d� j is the solid angle subtended by the j th surface el-
ement, from the vantage point �si on the cavity surface.

Equation (4.2) is used to define Dii in the CSC method.21

In addition, we have used this sum rule to extend the
FIXPVA discretization method to the SS(V)PE approach (see
Table III), whereas FIXPVA discretization was previously in-
troduced only in the context of C-PCM.20

For Sii , the FIXPVA method employs the widely
used formula Sii = CS(4π/ai )1/2, where CS is a numeri-
cal constant representing the average value of the Coulomb
self-repulsion integral over surface elements of various
sizes.17, 37, 44 The CSC method, in contrast, uses a sum rule

Sii = 1

ai

(
4π RI −

∑
j 	=i

Si j a j

)
(4.5)

that is derived21 by minimizing an approximate functional
for the Born solvation energy of a spherical ion in a con-
ductor, with respect to the Coulomb interaction between sur-
face charges. Only the CSC approach uses the sum rule in
Eq. (4.5).

Because the surface charge is assumed to be constant
over the area ai , the self-interaction over ai is strictly repul-
sive. Therefore, the quantities q2

i Sii and −q2
i Dii must both be

positive. (The matrix D is traditionally defined such that −Dii

is the actual contribution of the self-field to the PCM equa-
tions.) In the SWIG approach developed here, these matrix el-
ements are defined such that Sii > 0 and Dii < 0 by construc-
tion, and Sii > 0 is also guaranteed in the FIXPVA approach.
When sum rules are used to define these matrix elements,
however, there is no guarantee that the correct sign is ob-
tained. (In earlier work,15 this problem led us to set Dii = 0.)
For the CSC discretization scheme, which uses sum rules to
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define both Sii and Dii , this is potentially a problem for all
variants of PCM theory, including the C-PCM method where
the D matrix is absent.

From Eq. (4.2) we see that Dii > 0 if
∑

j 	=i Di j a j

< −2π , for some particular cavity geometry. This condi-
tion occurs readily when point charges are used in conjunc-
tion with a switching function, due to close approach of
point charges leading to some Di j � 0. Even when Gaussians
are employed, however, we have found that the requirement
Dii < 0 is regularly violated for any solute cavity consisting
of more than one sphere.

Clearly, Eq. (4.2) is no longer exact within these smooth
PCM approaches. One reason is that the relationship be-
tween the integral in Eq. (4.3) and the solid angle integral in
Eq. (4.4) is derived based on a pointwise discretization,
whereas our surface elements are spherical Gaussians. More
importantly, Eq. (4.4) is valid only if the surface elements
and vantage points all reside on a closed surface, but when
switching functions are used, some of the “surface” points �si

actually reside inside the cavity. For vantage points inside of
the cavity, the total solid angle subtended by the surface is∑

j

∫
d� j = 4π .46 Thus, if �si lies inside of the cavity sur-

face, we should expect that

−
∑
j 	=i

Di j a j ≈ 4π, (4.6)

which we have verified in numerical calculations. It follows
from Eqs. (4.2) and (4.6) that Dii ai ≈ 2π in this case, in vi-
olation of the condition Dii < 0. We have not inspected the
sum rule for Sii , Eq. (4.5), but it may be subject to similar
issues.

Breakdown of the sum rules has serious consequences. In
our initial report of SWIG,15 we mentioned the sum rule issue
for Dii and pointed out that it can compromise the positive-
definiteness of the matrix K, causing numerical instabilities.
We have since determined that loss of positive-definiteness
of K is not the fundamental origin of these instabilities. In-
stead, they arise due to violation of the negative-definiteness
of Q, resulting in nonvariational surface charge densities and
singularities in Epol. A numerical exploration of this issue is
presented in Sec. V A.

V. NUMERICAL TESTS

In this section, we present numerical comparisons of vari-
ous discretization methods, along with numerical tests of con-
vergence with respect to the Lebedev grid density. We have
implemented the SWIG, ISWIG, and FIXPVA discretization
schemes within a locally modified version of Q-Chem.47 To
make contact with the CSC approach,21 we have also imple-
mented a variant of SWIG that uses the CSC (sum rule) defi-
nition of Dii in Eq. (4.2), as opposed the SWIG definition in
Eq. (3.8). We refer to this modified approach as “subSWIG.”

Except for one set of calculations in Sec. V B, where
spherical solute cavities are used, all calculations use cavities
constructed from a union of atomic spheres. For QM solutes,
we use Bondi’s values for the vdW radii,27 except for hydro-
gen where a vdW radius of 1.1 Å is used.48 The vdW radii
are then scaled by a factor of 1.2 for use in cavity construc-
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FIG. 1. NaCl dissociation in water (ε = 78.39), computed at the
AMBER99 /SS(V)PE level using the “subSWIG” discretization scheme in
which Dii is defined using the sum rule in Eq. (4.2). Panel (a) plots the sol-
vation energy, Epol, and its gradient with respect to Cl displacement, while
panel (b) plots the largest eigenvalue of Q, along with the number of surface
grid points for which Fi > 10−8. Data points were calculated at 0.01 Å in-
tervals. For clarity, the vertical scale has been truncated in both panels, i.e.,
some of the sharp spikes are off of the scale that is used.

tion. For MM solutes, unscaled Lennard-Jones radii from the
AMBER99 force field49 are used to construct the cavity.

A. Bond breaking

Dissociation of NaCl in water provides an illustrative ex-
ample of the consequences that accompany breakdown of the
sum rule that is used to define Dii in the CSC/subSWIG ap-
proach. Here, we compute various quantities along the Na–Cl
dissociation coordinate, using the AMBER99 force field for the
NaCl solute,50 and the SS(V)PE solvation model for the aque-
ous solvent.

Figure 1 shows some results using subSWIG discretiza-
tion. A single, sharp spike in Epol (for which Epol > 0) can
be seen in the solvation energy curve, while the gradient of
Epol is rapidly oscillatory. Figure 1(b) shows that rapid os-
cillations in the gradient are correlated with geometries for
which the Q matrix exhibits one or more positive eigenval-
ues. In contrast, SWIG discretization (Fig. 2) produces com-
paratively minor oscillations in the gradient, and Q remains
rigorously negative-definite at all solute geometries.

The failure of subSWIG to preserve negative-definiteness
of Q opens the possibility of nonvariational solvation ener-
gies (Epol > 0), although in Fig. 1(a) we see only a single
instance where Epol > 0, and it occurs at an unrealistically
short Na–Cl distance, where one sphere completely envelops
the other. However, the benign appearance of Fig. 1(a) turns
out to be an artifact of the relatively large spacing (0.01 Å)
between the data points. If we take much smaller steps, as in
Fig. 3, we discover sharp spikes in the solvation energy at
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FIG. 2. NaCl dissociation in water (ε = 78.39), computed at the
AMBER99 /SS(V)PE level using the SWIG discretization scheme. Panel (a)
plots the solvation energy, Epol, and its gradient with respect to Cl displace-
ment, while panel (b) plots the largest eigenvalue of Q, along with the number
of surface grid points for which Fi > 10−8. Data points were calculated at
0.01 Å intervals.

other internuclear distances, which are correlated in each case
with positive eigenvalues of Q. These singularities exist de-
spite the fact that subSWIG employs both a switching function
and Gaussian surface charges, and is equivalent to SWIG ex-
cept that it uses a sum rule to define Dii . The regions where
Epol > 0 are highly localized, so it is not surprising that the
energy curve in Fig. 1(a), where the data points are 0.01 Å
apart, fortuitously avoids these anomalies. Nevertheless, we
will see that these singularities are encountered in realistic
calculations on polyatomic solutes, and that they pose real
problems.

Examining the largest eigenvalue of Q in the case of
SWIG discretization [Fig. 2(b)], one might worry about what
appear to be sharp jumps in this eigenvalue, but in fact
these oscillations are perfectly natural. As shown in Ap-
pendix B, the switching function causes Q to exhibit a null
space corresponding to those surface elements for which
Fi = 0, so that the largest (i.e., least negative) eigenvalue of
Q must approach zero as any Fi → 0. Figure 2(b) shows
that rapid oscillations in this eigenvalue are indeed corre-
lated with changes in the number of grid points for which
Fi exceeds our drop tolerance of 10−8.

B. Solvation energies

Certain PCM theories and cavity shapes may be more or
less accurate than others for predicting solvation free energies,
but ideally we would like to separate this aspect of the model
from the smoothing procedure, so that the smoothed model
is faithful to the underlying PCM and does not significantly
perturb solvation energies, relative to those obtained using es-
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FIG. 3. Solvation energy, Epol, and eigenvalues of Q, near a singular point
of the subSWIG potential energy surface for NaCl dissociation. (Data points
are calculated every 10−4 Å.) The inset shows a larger range of internuclear
distances, and suggests that singularities may go unnoticed unless the spacing
between data points is extremely small.

tablished discretization schemes. As a representative example
of the latter, we choose the variable tesserae number (VTN)
discretization method,19 which uses point charges and does
not employ a switching function. The VTN scheme was de-
veloped as a “less discontinuous” discretization method, and
serves as a baseline against which to compare the SWIG, CSC,
and FIXPVA methods. The VTN method uses the same ma-
trix elements as FIXPVA (see Table III), but does not scale
the areas with a switching function. Instead, Fi in Eq. (2.17)
is replaced with a delta function, according to whether the i th
grid point is inside of the cavity or not. VTN calculations are
therefore subject to Coulomb singularities as well as discon-
tinuities.

As a first set of tests, we examine the molecules H2O,
CH3CONH2, NO+, and CN−, which were previously used
by Chipman2 to test his isodensity implementation of the
SS(V)PE model. We do not employ an isodensity cavity
construction, but instead place each molecule inside of a
spherical cavity centered at the molecule’s center of mass,
and discretized using 1202 Lebedev grid points. The radius
of this cavity is selected in order to replicate the solvation
energies reported by Chipman,2 computed in our case us-
ing SS(V)PE[VTN]. Using a spherical cavity allows us to
sidestep issues of continuity and smoothness in this set of
tests, and thereby examine the extent to which the Gaussian
surface charges perturb solvation energies, as compared to the
baseline VTN discretization. (Note that the switching
function is irrelevant here, since the cavity consists of a single
sphere.)
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TABLE IV. Comparison of solvation energies (in kcal/mol), using a solute
cavity consisting of a single sphere whose radius is adjusted in order to repro-
duce the solvation energies reported in Ref. 2, where an isodensity contour
was used to define the cavity surface.

ε = 78.304 (water)
Theory Method H2O CH3CONH2 NO+ CN−

C-PCM VTN −8.69 −10.91 −88.47 −67.32
SWIG −8.69 −10.93 −88.49 −67.30

SS(V)PE VTN −8.58 −10.81 −88.47 −67.31
SWIG −8.62 −10.84 −88.48 −67.29

ε = 2.379 (toluene)

Theory Method H2O CH3CONH2 NO+ CN−

C-PCM VTN −4.90 −6.43 −52.30 −39.56
SWIG −4.90 −6.45 −52.31 −39.55

SS(V)PE VTN −3.92 −5.01 −52.21 −39.35
SWIG −3.92 −5.02 −52.22 −39.34

Solvation energies for the aforementioned molecules are
reported in Table IV, where they were computed using the
same procedure as in Ref. 2. Specifically, each molecule was
optimized in the gas phase at the Hartree–Fock (HF) level
to obtain the gas-phase energy, Egas. The 6-31G** basis set
was used for all molecules except CN−, for which we used
the 6-31+G* basis. Solvation energies, Eslvn = W − Egas,
were then computed at the gas-phase geometry, where W
[Eq. (2.3)] is the solution-phase energy for some particu-
lar choice of PCM and discretization method. We performed
these calculations in both a high-dielectric solvent (water)
and a low-dielectric solvent (toluene). The results in Table IV
demonstrate that SWIG discretization reproduces VTN ener-
gies to within 0.04 kcal/mol, in either solvent, using both the
C-PCM and SS(V)PE solvation models. We take these results
to indicate that Gaussian smoothing of the surface charges has
a negligible effect on the energetics of the underlying PCM.

To ascertain the effects of the switching function on
Eslvn, we need to use nonspherical cavities, so we repeated
the calculations on H2O, CH3CONH2, NO+, and CN− using
a vdW cavity constructed from a union of atomic spheres,
as described above. Each sphere was discretized using a
1202-point Lebedev grid, discarding any points for which Fi

< 10−8. Solvation energies are reported in Table V for the
VTN, SWIG, ISWIG, and subSWIG discretization methods.

These various discretization schemes afford very similar
solvation energies at the C-PCM level, but results computed
using SS(V)PE vary over a somewhat wider range. In partic-
ular, the SWIG and subSWIG discretization schemes differ by
as much as 1.3 kcal/mol for NO+ and CN− in water, the cases
where the solvation energy is largest. VTN solvation energies
are quite close to those obtained using other discretization
methods, except in the case of CH3CONH2 in water, where
discrepancies as large as 1.6 kcal/mol are observed.

While it is not completely clear what is the most accurate
value of Eslvn, we are inclined to prefer the SWIG and ISWIG

results, which agree with the other discretization schemes at
the C-PCM level, where the D matrix is absent, yet are free
of singularities at the SS(V)PE level. The SWIG and ISWIG

solvation energies in Table V differ from one another by no

TABLE V. Comparison of solvation energies (in kcal/mol) using a vdW
cavity composed of atomic spheres. Note that SWIG and subSWIG discretiza-
tion procedures are equivalent in the case of C-PCM.

ε = 78.304 (water)
Theory Method H2O CH3CONH2 NO+ CN−

C-PCM VTN −6.94 −10.05 −81.33 −69.73
SWIG −6.93 −10.04 −81.28 −69.69
ISWIG −6.93 −10.05 −81.28 −69.70

SS(V)PE VTN −6.89 −11.38 −80.69 −69.62
subSWIG −6.89 −9.99 −81.26 −69.69
SWIG −6.82 −9.81 −79.96 −68.86
ISWIG −6.86 −9.90 −80.55 −69.27

ε = 2.379 (toluene)
Theory Method H2O CH3CONH2 NO+ CN−

C-PCM VTN −3.92 −5.49 −47.74 −40.78
SWIG −3.91 −5.49 −47.71 −40.76
ISWIG −3.91 −5.49 −47.71 −40.76

SS(V)PE VTN −3.26 −4.49 −47.32 −40.71
subSWIG −3.25 −4.70 −47.39 −40.68
SWIG −3.24 −4.68 −47.02 −40.43
ISWIG −3.25 −4.70 −47.20 −40.56

more than 0.6 kcal/mol, which is comparable to (or smaller
than) the intrinsic error in solvation energies computed using
models of this type.51

C. Discretization errors

In most finite-element methods, energy is not rigorously
rotationally invariant. When Poisson’s equation is integrated
on a three-dimensional grid, however, our experience sug-
gests that violations of rotational invariance are quite small.52

For the ASC PCMs considered here, rotational invariance is
not preserved because each octahedral Lebedev grid is con-
structed in the laboratory frame, then translated to the atomic
center in question. Although the energy will be rotationally
invariant in the limit of an infinitely dense discretization grid,
it is desirable to know what is the smallest number of Lebedev
grid points that affords tolerable errors.

We assess rotational invariance for the SWIG discretiza-
tion scheme using the 20 standard amino acids as a data set.
We choose these molecules because (i) MM parameters are
readily available for them; (ii) their side chains exhibit a vari-
ety of chemical properties (polar and nonpolar, charged and
neutral, etc.); and (iii) proteins are often investigated with
implicit solvent models. The geometries of the amino acids
were generated, in their zwitterionic forms, using the TINKER

program,54 and were not further optimized. For each amino
acid, we calculated the energy at each of ten randomly gen-
erated rotations of the TINKER structure, and quantified the
rotational invariance according to the quantity

�rot = 1

20

amino
acids∑

A

[
1

10

10∑
i=1

(WA,i − W A)2

]1/2

, (5.1)
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FIG. 4. Rotational variance, �rot, and Gauss’ Law error, �GL, as a function
of the number of grid points per atom, for a set of 20 amino acids in water
(ε = 78.39). Error bars represent one standard deviation about the mean. For
clarity, the error bars are omitted for �GL, but can be found in the supporting
information (Ref. 42).

where WA,i represents the energy of the i th orientation of
amino acid A, and W A is the average over the ten values
of WA,i .

Figure 4 plots �rot versus the number of Lebedev grid
points per atomic sphere, for both QM (HF/6-31+G*) and
MM (AMBER99) solutes, at the C-PCM[SWIG] level. Even for
the sparsest grid that we tested (26 grid points per atomic
sphere), �rot < 0.1 kcal/mol. The error is solute-dependent,
of course, but combined with small rotational errors observed
by YK for a different set of solutes,16 these results indicate
that errors in rotational invariance are essentially negligible
when Lebedev grids are used.

We also calculate the error in Gauss’ Law for this same
data set. Restricting our attention to the AMBER99 case, for
which ρ0 is contained entirely within the cavity, we can write
Gauss’ Law as∫

σpol(�s)d2�s = −
(

ε − 1

ε

)∫
ρ0(�r )d3�r . (5.2)

The deviation from this exact equality can be quantified as

�GL = 1

20

amino
acids∑

A

{
1

10

10∑
i=1

[
Qsurf

A,i +
(

ε − 1

ε

)
Q A

]2
}1/2

,

(5.3)

where Qsurf
A,i is the total surface charge on amino acid A in its

i th orientation, and Q A net charge on this amino acid. The
dependence of �GL on the number of grid points is shown in
Fig. 4, and as with �rot, we find that �GL is reasonably small,
even for sparse grids.

To investigate the convergence of the total energy, W ,
with respect to the Lebedev grid density, we used this same
set of amino acids (but only one orientation for each), and
examined the energy differences WN − W1202, where the sub-
script indicates the number of grid points per atomic sphere.
These differences are plotted, as a function of N , in Fig. 5,
for both AMBER99 and HF/6-31+G* solutes. (In the latter
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FIG. 5. Plots of the C-PCM[SWIG] discretization error, WN − W1202, (solid
lines) and the RMSE of the gradient (broken lines), as a function of the num-
ber of Lebedev grid points per atomic sphere. Data points represent averages
over the set of 20 amino acids in water (ε = 78.39), with error bars repre-
senting one standard deviation on either side of the mean.

case, the discretization errors that we observe using atom-
centered Lebedev grids are comparable, as a function of N ,
to those obtained using an isodensity cavity discretized with a
single-center Lebedev grid.2) The energy discretization error
is significant for the smallest grids but is reduced to less than
0.5 kcal/mol, on average, for N = 110 (AMBER99) or
N = 194 (HF/6-31+G*). That the HF calculations are more
sensitive to N likely reflects the more complicated topogra-
phy of the electrostatic potential, relative to that generated by
a collection of point charges.

Figure 5 also plots the root mean square error (RMSE) in
the energy gradient, as compared to the result obtained using
1202 Lebedev points per atomic sphere. When N is small,
the RMSE is comparable in magnitude to the gradient itself
(∼ 10−2 a.u. for the unoptimized amino acid structures).
However, for N = 110 (AMBER99) and N = 194 (HF/6-
31+G*), the RMSE in the gradient drops below 10−4 a.u.

Numerical data for the convergence tests in the sec-
tion can be found, in tabular form, in the supporting
information.42

VI. SAMPLE APPLICATIONS

In this section we use SWIG in several applications that
demand smooth potential energy surfaces, and compare the
results to those obtained using FIXPVA and subSWIG dis-
cretization. All calculations reported in the section assume
that the solute and solvent remain in equilibrium at all times;
see Ref. 1 for a discussion of nonequilibrium solvation. So-
lute cavities in these applications are constructed as described
in Sec. V.

A. Geometry optimization and vibrational
frequency analysis

In our initial report of the SWIG method,15 we demon-
strated that certain discretization schemes give rise to spurious
harmonic frequencies, when computed by finite difference of
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FIG. 6. Harmonic vibrational spectrum of Arg-Asp in water (ε = 78.39),
computed by finite difference of analytic energy gradients at the B3LYP/
6-31G*/C-PCM level, with either (a) FIXPVA or (b) SWIG discretization.
Stick spectra were convolved with 20 cm−1 Gaussians. Arrows indicate peaks
in the FIXPVA spectrum that have no obvious analogues in the SWIG spec-
trum at nearby frequencies.

analytic energy gradients, as is often the required when the
solute is described using a correlated wavefunction. On the
other hand, the “solute” in the example of Ref. 15 consisted
of adenine plus 52 explicit MM water molecules, and is ar-
guably not representative of most applications of PCMs. Here,
we consider some more pedestrian examples.

1. Comparison to FIXPVA

As a first application, we compute harmonic vibra-
tional frequencies for the dipeptide arginine–aspartate (Arg-
Asp), in aqueous solution at the B3LYP/6-31G* level, using
C-PCM in conjunction with either SWIG or FIXPVA dis-
cretization. The initial structure of the dipeptide, in its zwit-
terionic form, was generated using the TINKER program,54

and subsequently optimized in the gas phase. The gas-phase
structure was then optimized with C-PCM[SWIG] and, sep-
arately, with C-PCM[FIXPVA]. (Atomic spheres were dis-
cretized using 110 Lebedev grid points.) Unfortunately, these
two solution-phase optimizations converged to quite differ-
ent structures, making for an unfair comparison. Thus, the
FIXPVA optimization was restarted from the SWIG optimized
structure, and ultimately similar optimized geometries were
obtained from both methods. Harmonic frequencies were then
computed by finite difference of analytic energy gradients,
with a step size of 10−3 Å. The resulting spectra are shown
in Fig. 6.

Because the SWIG and FIXPVA discretizations afford
somewhat different potential energy surfaces, one should not
expect these methods to yield identical vibrational spectra.
Nevertheless, it is worrisome that there are a few peaks
present in the FIXPVA spectrum, largely involving N–H and
C–H stretching modes, that have no obvious analogues in the
SWIG spectrum. Although these peaks do appear in an appro-
priate spectral region for such modes (unlike some of the spu-
rious peaks in the adenine–water example from Ref. 15), upon
closer examination we find that the vibrations in question are

associated with finite-difference steps that rapidly turn on or
off certain surface elements, causing a sharp change in the
FIXPVA energy and gradient and a large perturbation in the
harmonic frequency. On the other hand, the SWIG spectrum
appears to be free of peaks associated with dramatic changes
in the cavity surface.

The FIXPVA potential energy surface is rigorously
smooth, mathematically speaking, so discontinuities cannot
explain spurious peaks in the vibrational spectrum. Instead,
the rapid fluctuations in the gradient that give rise to these
peaks result from the fact that the FIXPVA switching func-
tion attenuates the surface elements much more rapidly than
the switching functions used in the SWIG and ISWIG methods.
Rapid switching is necessary within the FIXPVA approach, in
order to avoid singularities arising from close approach of sur-
face point charges. However, this rapid scaling of the surface
element areas can lead to “holes” in the cavity surface, in re-
gions of high surface grid density.15 These holes lead to a poor
representation of σpol(�s) and an underestimate of the cavity
surface area.15, 20 Although the FIXPVA switching function
prevents ri j from every being exactly zero (by attenuating the
surface elements in question as ri j → 0), the delicate balance
between the switching function and the singular Coulomb po-
tential is sufficient to cause unwanted oscillations in energy
and gradient, even for the relatively small perturbations used
in finite-difference calculations. (Such oscillations can also
lead to the appearance of spurious maxima and/or minima in
the potential energy surface.15)

Although stable geometry optimizations in large
molecules have been reported using FIXPVA,20 these calcu-
lations were carried out using a GEPOL cavity surface, and
are not directly comparable to what is reported here. It is
possible that Lebedev grids exacerbate the difficulties with
FIXPVA, because the Lebedev grid points are distributed less
uniformly than are the GEPOL tesserae, and may therefore
be closer together in some cases. In the present work, we
took parameters for the FIXPVA switching function from
Ref. 20, where they were determined for use with GEPOL.
Reparameterization for Lebedev grids might mitigate some
of the problems that we observe using FIXPVA, but will
not eliminate the delicate balance between the switching
function and the singular Coulomb potential that requires
the use of a rapidly varying switching function. We avoid
this requirement here, by means of Gaussian surface
charges.

2. Comparison to CSC/subSWIG

Strong Coulomb interactions are not the only possible
cause of spurious lines in vibrational spectra. To illustrate,
we compute the harmonic vibrational spectrum of a glycerol
molecule in liquid glycerol solution (ε = 42.7) at the HF/
6-31G*/SS(V)PE level using both the SWIG and subSWIG dis-
cretizations. (Recall that these methods are the same, except
that subSWIG uses the CSC sum rule to define the Dii matrix
elements.) Details of the calculations were the same as for
the Arg-Asp calculations described above, except that in this
case, both discretization schemes afford essentially identical



244111-14 A. W. Lange and J. M. Herbert J. Chem. Phys. 133, 244111 (2010)

0 1000 2000 3000 4000 5000 6000
0

200

300

100

0

200

300

100

0

200

300

100

(a) Gas Phase

(b) SWIG

(c) subSWIG

vibrational wavenumber / cm–1

in
te

ns
ity

  /
  k

m
 m

ol
–1

FIG. 7. Harmonic vibrational spectra of glycerol computed at the HF/6-
31G* level in (a) the gas phase; (b) liquid glycerol (ε = 42.7), described
at the SS(V)PE[SWIG] level; and (c) liquid glycerol, described at the
SS(V)PE[subSWIG] level. Stick spectra were convolved with 20 cm−1 Gaus-
sians. Arrows indicate spurious peaks in the subSWIG spectrum.

solution-phase geometries, and this geometry is very close to
that obtained in the gas phase. Vibrational spectra are depicted
in Fig. 7.

Although the gas-phase spectrum and SS(V)PE[SWIG]
spectrum are similar (as one might expect, given that the PCM
alters the geometry very little), the SS(V)PE[subSWIG] spec-
trum exhibits peaks that are clearly absent in these other spec-
tra. Two of these features, which are associated with C–H
stretching modes, have frequencies above 4700 cm−1, and are
clearly artifacts. These artifacts arise as a consequence of vi-
olations in the variational principle that result when Dii is de-
fined using a sum rule. It is worth noting that not all of the
peaks are affected by this problem; the O–H stretching peak
around 4000 cm−1, for example, is quite similar in all three
spectra shown in Fig. 7.

B. Molecular dynamics

A molecular dynamics (MD) calculation is an especially
stringent test of PCM cavity discretization, because such a
calculation may explore a broad swath of the solute’s poten-
tial energy surface, and because conservation of energy places
demands on how rapidly the energy may change as a func-
tion of solute geometry. Here, we report MD simulations in a
PCM, using both QM and MM descriptions of the solute.

1. Molecular mechanics

We propagated molecular dynamics for a single-stranded
DNA oligomer, d(GACT), using the AMBER99 force field to
describe the DNA and the C-PCM model to describe the aque-
ous solvent (ε = 78.39). A time step of 1.0 fs was used, with
initial velocities sampled from a Boltzmann distribution at
T = 300 K.

Figure 8 compares the energy fluctuations observed us-
ing SWIG and FIXPVA discretization, as well as those from a
gas-phase MD simulation of the same solute. The d(GACT)
molecule is fairly flexible, and undergoes considerable geo-
metric rearrangement over 10 ps, substantially altering the
cavity shape. The FIXPVA approach is unable to cope with
these changes, and exhibits a catastrophic failure to con-
serve energy, with two jumps of � 10 kcal/mol within the
first 3 ps of simulation. Eventually, one of these jumps sim-
ply crashes the simulation, due to an overflow error in the
atomic velocities. As in the case of FIXPVA geometry opti-
mizations, these abrupt changes in energy originate in the too-
close approach of surface charges as grid points vanish into, or
emerge from, the interior of the cavity. The SWIG discretiza-
tion, on the other hand, exhibits energy fluctuations of only
∼0.2 kcal/mol over the entire 10 ps of the simulation, which
is comparable to what is observed in the gas phase.

2. Ab initio MD

As a second MD example, we performed an ab initio MD
simulation on glycine in water, with the solute described at the
PBE0/6-31+G* level, using the SS(V)PE model. We compare
the ISWIG discretization approach to “subiSWIG,” which sub-
stitutes the sum rule in Eq. (4.2) as a definition of Dii . The
simulations begin at the gas-phase optimized geometry and
use initial velocities corresponding to the zero-point energy of
the gas phase vibrational modes, with a time step of 0.97 fs.
Energy fluctuations are shown in Fig. 9. Within the first 15 fs,
the subiSWIG simulation encounters a singularity, leading to a
jump in the energy of nearly 100 kcal/mol. After several more
large jumps, the simulation eventually reaches a geometry for
which the SCF procedure fails to converge. Three separate
attempts with subiSWIG were made, using slightly different
initial conditions, but each suffered the same fate. In contrast,
the ISWIG discretization conserves energy just as well as the
gas phase simulation, and is stable through at least 5 ps of
simulation.

In aqueous solution, the lowest-energy tautomer of
glycine is the zwitterion +NH3CH2CO−

2 , whereas the neutral
form [NH2CH2C(O)OH] is ∼11 kcal/mol higher in energy,
but in the gas phase the neutral form is more stable by ∼18
kcal/mol.55, 56 Our SS(V)PE[ISWIG] simulations bear this out;
starting from the gas-phase geometry, in which the carboxylic
acid moiety is protonated, the molecule eventually undergoes
an intramolecular proton transfer to form the zwitterion, a
process that is not observed in the gas-phase MD simulation.
Figure 10 shows that the solvation energy changes smoothly
as this proton transfer occurs.

VII. SUMMARY

This work introduces the Switching/Gaussian (SWIG)
discretization method for apparent surface charge PCMs,
which generalizes a method originally introduced by York
and Karplus16 in the context of the conductor-like screen-
ing model. The approach developed here is applicable not
only to C-PCM/GCOSMO calculations, but also to more
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FIG. 8. Fluctuations in the energy during an MD simulation of single-stranded d(GACT) in water, described at the AMBER99 /C-PCM level. The inset shows a
close-up view of the energy fluctuations obtained in the gas phase and with C-PCM[SWIG]. The time step is 1.0 fs.

sophisticated PCMs such as SS(V)PE and IEF-PCM. Both
QM and MM solutes are possible.

Comparison to other “smooth discretization” approaches
reveals that while these alternative methods may afford poten-
tial energy surfaces that are rigorously smooth, in a mathemat-
ical sense, they suffer from Coulomb singularities when point
charges are used to represent the surface charge. This prob-
lem can be eliminated by using spherical Gaussian functions
to represent the surface charge, but in this case, the approx-
imate nature of certain sum rules that are traditionally used
in these models can lead to nonvariational singularities in the
solvation energy.

The SWIG approach eliminates both of these problems,
by using Gaussian surface charges but avoiding the use of
sum rules to define the matrix elements of the PCM equa-
tions. The result is a method that affords smooth potential en-
ergy surfaces and is largely free of unwanted oscillations in
the energy gradient, so that molecular dynamics simulations
are stable and robust, and harmonic vibrational frequencies
can safely be calculated by finite difference of analytic en-
ergy gradients. SWIG discretization also appears to be faithful
to the energetics of the underlying integral-equation PCM. As
such, there seems to be no reason not to use this discretization
method for all PCM calculations.
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FIG. 9. Fluctuations in the energy during an MD simulation of glycine in water, described at the PBE0/6-31+G*/SS(V)PE level. The inset shows a close-up
view of the energy fluctuations obtained in the gas phase and with SS(V)PE[ISWIG] over the entire simulation. The time step is 0.97 fs.
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APPENDIX A: INTEGRAL EQUATION FORMULATION

Here, we show how different PCMs are represented
in the context of the reaction-field equations presented in
Sec. II. The relevant integral operators are described in de-
tail elsewhere.2, 3, 8 Briefly, the operator Ŝ acts on an arbitrary
surface charge density, σ (�s), to generate the corresponding
electrostatic potential on the surface:

Ŝσ (�s) =
∫

σ (�s ′)
|�s − �s ′|d2�s ′ = φ(�s). (A1)

The operator D̂† acts on σ (�s) to produce the negative of the
normal component of the electric field,

D̂†σ (�s) =
∫

σ (�s ′)
�ns ·(�s − �s ′)
|�s − �s ′|3 d2�s ′

= − �F(�s)·�ns . (A2)

(Here, �ns is the outward-pointing unit vector normal to the
cavity surface, at the point �s.) We also define D̂, the adjoint
of D̂†, and note that

D̂ Ŝ = Ŝ D̂†. (A3)

As noted in Sec. II C 3, however, this equality is generally not
preserved when these operators are discretized to yield finite-
dimensional matrices.2, 57

In Sec. II A we introduced wdispl, the work required to
displace the bound charges within the dielectric. Our goal here
is to obtain an expression for this quantity, in terms of the
electrostatic interactions at the cavity surface. Various PCMs
afford different expressions for wdispl, and although the orig-
inal derivations of these models did not explicitly invoke the
charge-displacement work, we will show that all of them can
be recast into the framework of Eq. (2.10), whence an expres-
sion for wdispl is obtained.

The simplest possible continuum model is obtained by
assuming that the medium is a conductor. In this case, wdispl

= 0 because charges in the continuum are unbound. Expres-
sions for wdispl in finite-dielectric models are not as obvious
but can be obtained after some algebra. The resulting expres-
sions for wdispl in C-PCM and SS(V)PE are given in Table VI.
Note that in each case, wdispl → 0 as ε → ∞.

As a check of these expressions for wdispl, we insert them
into the variational condition, Eq. (2.13). Upon rearranging
the result, one obtains the condition

Ŝσpol(�s) = −
(

ε − 1

ε

)
φ0(�s) (A4)

TABLE VI. Definitions of wdispl for various continuum models. The quan-
tity ε represents the dielectric constant of the medium.

Continuum
Model wdispl

Conductor 0

C-PCM
1

2

(
1

ε − 1

)∫
σpol(�s)Ŝσpol(�s)d2�s

SS(V)PE

(
1

ε − 1

) ∫
σpol(�s)

[
Î − 1

2π
D̂

]−1

Ŝσpol(�s)d2�s
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in the case of C-PCM, whereas for SS(V)PE, the variational
condition can be written[

Î −
(

ε − 1

ε + 1

)
1

2π
D̂

]
Ŝσpol(�s)

= −
(

ε − 1

ε + 1

)[
Î − 1

2π
D̂

]
φ0(�s). (A5)

These two equations are precisely the standard PCM working
equations for these two models, which can be expressed in the
general form2–4 [cf. Eq. (2.18)]

K̂σpol(�s) = R̂φ0(�s). (A6)

Discretization of Eqs. (A4) and (A5) affords the matrix forms
of K and R that appear in Table I. [Note the symmetrization
that is performed in the SS(V)PE case, since DAS 	= SAD†.]

Defining Q̂ = K̂ −1 R̂, it follows from Eqs. (2.15) and
(A6) that

− Q̂−1σpol(�s) = Ŝσpol(�s) + δwdispl

δσpol(�s)
. (A7)

Invoking the condition that W should be minimized with re-
spect to variation of σpol [Eq. (2.14)], it follows that the opera-
tor Q̂ must be negative-definite. (This same result was demon-
strated, in a somewhat different fashion, in Ref. 57.)

APPENDIX B: CONTINUITY

Here we show how the switching function in SWIG and
similar methods ensures that the solute’s potential energy sur-
face is continuous. Our proof generalizes the one given in
Ref. 16 for the YK version of COSMO.

We begin by decomposing the K matrix from Eq. (2.18)
into a sum of its diagonal and off-diagonal contributions,
K = Kdiag + Koff. We can then express K as

K = K1/2
diagLK1/2

diag, (B1)

where

L = I + K−1/2
diag KoffK

−1/2
diag (B2)

and I is a unit matrix. Inserting Eq. (B1) into Eq. (2.20), one
may express the solvation energy as

Epol = 1
2 v†K−1/2

diag L−1K−1/2
diag y, (B3)

where y = Rv.
The key point is that every term in the diagonal matrix

element Kii contains a factor of Sii , for each of the solvation
models considered here (see Table I.) Thus, by placing the
switching function Fi in the denominator of Sii [Eq. (3.7)],
we ensure that the i th diagonal element of K−1/2

diag goes to
zero as Fi → 0. For the FIXPVA and CSC methods, ai → 0
as �si enters the cavity, which has the same effect, according
to Eq. (4.1).

It then follows from Eqs. (B1) and (B2) that K−1 has a
null space corresponding to those surface elements for which
Fi = 0, and that L acts as a unit matrix within this null space.
As such, the dimension of q = K−1y can be reduced without
approximation to include only those surface grid points for

which Fi > 0. For the same reason, the i th grid point’s con-
tribution to Epol vanishes as Fi → 0. Since Fi is a smooth
function of the nuclear coordinates, so is Epol.

APPENDIX C: SWITCHING FUNCTION GRADIENT

The gradient of the switching function Fi with respect to
the M th solute nucleus is

∇̂M Fi = Fi

atoms∑
J

∇̂M f (�si , �rJ )

f (�si , �rJ )
. (C1)

For the elementary switching function f (�si , �rJ ) that is defined
in Eq. (3.18), the derivative with respect to a perturbation of
the M th nucleus is

∇̂M f (�si , �rJ ) = ∂h(di J )

∂di J
∇̂M di J . (C2)

The derivative ∂h(di J )/∂di J is easily derived from Eq. (3.19),
while the other term in Eq. (C2) is given by

∇̂M di J =
( �ri − �rJ

ri J

)
δi M − δJ M

Rsw,J
. (C3)

For the alternative elementary switching function defined in
Eq. (3.20), the gradient is

∇̂M f (�si , �rJ ) = ∂ f (�ri , �rJ )

∂ri J
∇̂Mri J , (C4)

where

∂ f (�si , �rJ )

∂ri J
= ζi√

π

{
exp

[−ζ 2
i (RJ − ri J )2

]
+ exp

[−ζ 2
i (RJ + ri J )2

]}
(C5)

and

∇̂Mri J = �rJ − �si

ri J
(δJ M − δi M ). (C6)

For Lebedev discretization, the i th quadrature point con-
tributes ai = wi R2

I Fi to the total surface area. From Eq. (C1),
it follows that

∇̂M ai = ai

atoms∑
J

∇̂M f (�si , �rJ )

f (�si , �rJ )
. (C7)

In view of this result, the expression for the gradient of the
total cavity surface area is considerably simpler than it is
in either the GEPOL surface tessellation approach32 or the
FIXPVA method.20 Although we do not consider nonelec-
trostatic solute–continuum interactions in the present work,
Eq. (C7) shows that the SWIG approach leads to simple ex-
pressions for the gradients of typical nonelectrostatic inter-
action terms,22, 23 which are explicit functions of the cavity
surface area.
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