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Recently, we described a technique1, 2 for discretizing
the integral equations that appear in certain “apparent sur-
face charge” dielectric continuum solvation models, com-
monly known as polarizable continuum models (PCMs).3 Our
switching/Gaussian (SWIG) approach1, 2 generalizes a tech-
nique that was introduced by York and Karplus4 (YK) in the
context of the conductor-like screening model (COSMO), in
order to ensure that finite-element discretization of the so-
lute/continuum interface does not introduce discontinuities in
the solute’s potential energy surface. The SWIG procedure
extends the YK ideas to a more general class of PCMs that
are known in the literature as either the “integral equation
formalism” (IEF-PCM),3, 5–7 or else the “surface and simu-
lation of volume polarization for electrostatics” [SS(V)PE]
method.8–10

Subsequent to our initial report of the SWIG
methodology,1 Scalmani and Frisch (SF) reported their
own “continuous surface charge” (CSC) extension of the YK
technique.11 In a Comment12 directed at our follow-up paper
detailing the SWIG approach,2 SF point out that Ref. 2 also
reports a “subSWIG” model that is not a full implementation
of the CSC method, and that conclusions based on the
subSWIG model are therefore not transferable to the CSC
method. Below, we clarify what was claimed in our paper,2

and also comment on similarities and differences between the
SWIG and CSC approaches.

To understand this discussion, a bit of context is re-
quired. The original YK procedure has two essential features:
a switching function that smoothly attenuates the contribution
of each surface discretization point, �si , as that point passes
through a buffer region that surrounds the solute cavity; and
Gaussian blurring of the surface charges that are located at
the points �si . We have shown that Gaussian blurring is es-
sential when a switching function is employed, because the
switching function allows the surface points to approach one
another more closely than they otherwise would. This can
lead to undesirable (albeit continuously differentiable) oscil-
lations in the energy gradient, which are largely eliminated by
Gaussian blurring.1

To generalize the YK technique to IEF-PCM/SS(V)PE
and related methods, one must decide how to discretize
the integral operators D̂ and D̂†, which do not appear in
COSMO. (The operator D̂† generates the normal negative of
the outward-directed electric field at the cavity surface.2, 3, 6, 8)
The off-diagonal matrix elements Di j can be obtained in a

straightforward way from the off-diagonal matrix elements of
the surface Coulomb operator, Ŝ, via the relation3

Di j = �n j ·∂Si j

∂�r j
. (1)

Diagonal matrix elements are more problematic. The ma-
trix elements Sii (which represent the Coulomb self-energies
of the surface elements) have traditionally been obtained
by numerical integration of the Coulomb potential,13–15 al-
though they can be evaluated analytically within the SWIG
approach.1, 2 In any case, Eq. (1) is not helpful in defin-
ing Dii . Often Dii is simply set to zero,15 but the accuracy
improves15, 16 if Dii is defined by means of an exact sum
rule,16

Dii = − 1

ai

(
2π +

∑
j �=i

Di j a j

)
. (2)

Here, ai represents the area associated with the i th surface
element.

In a preliminary report of our extension of the YK
scheme, we set Dii = 0.1 This is justified in the limit ai → 0,
but this choice was also pragmatic, as we encountered numer-
ical problems when the definition in Eq. (2) was used instead.
Subsequently, we presented a mathematical proof that Eq. (2)
does not hold when a switching function is used.2 A variety
of numerical problems, including nonvariational solvation en-
ergies, are encountered when this sum rule is used to define
Dii within SWIG-type approaches.2 Numerical problems are
avoided by setting Dii = 0, but this choice degrades the accu-
racy of the predicted solvation energies. Instead, we chose the
definition

Dii = − Sii

2RI
, (3)

which is exact for a spherical cavity of radius RI .5 (We take
RI to be the radius of the atomic sphere on which the point �si

resides.2) Using this definition, the SWIG implementation of
IEF-PCM/SS(V)PE appears to be free of numerical artifacts.
Numerical tests in Ref. 2 show that solvation energies ob-
tained using SWIG discretization are in good agreement with
those obtained using straightforward pointwise discretization
of the solute cavity, for which Eq. (2) is valid.

Returning now to the contention at hand, SF claim12

that we have reported an incorrect implementation of their
CSC method. What is in fact reported in our paper,2 for
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comparison to our preferred SWIG approach, is a well-
defined, alternative method in which the sum rule in Eq. (2) is
substituted in place of the definition in Eq. (3). We therefore
chose to refer to this alternative method as the “subSWIG”
discretization procedure, and this terminology is used consis-
tently in labeling the data (see Sec. V of Ref. 2). Unfortu-
nately, in a few instances we did make statements that may
imply an equivalence between CSC and subSWIG, where in
fact none exists. In particular, we concede that the expression
given for the CSC value of Dii (Table III in Ref. 2) as well as
that for Sii [Eq. (4.5) in Ref. 2] are incorrect and misleading,
as the summations over surface grid points in these expres-
sions should have been restricted to a single atomic sphere.

At the same time, this in no way affects the veracity or
importance of the subSWIG comparisons summarized above.
Although the subSWIG approach was not intended for real-
istic chemical applications, results obtained using this model
are nevertheless important in view of the widespread use of
Eq. (2) in the PCM literature.3, 10, 15, 17–19 SubSWIG results
confirm the formal proof that the PCM solvation energy is
no longer variational when Eq. (2) is used in conjunction with
a switching function. Other numerical artifacts are also en-
countered using subSWIG, including anomalous vibrational
frequencies and catastrophic failures to conserve energy in
molecular dynamics simulations.2 These artifacts are avoided
in our preferred SWIG approach,2 and also, it appears, in the
CSC approach.12

In the CSC discretization method,11 the matrix elements
Dii are defined by considering the atomic spheres individu-
ally, independent of how they intersect to form the cavity sur-
face. The sum rule in Eq. (2) is applied to each individual
atomic sphere (in the context of the Born ion model), using
exact expressions for Di j and Si j that are the same as those
that would be used in our SWIG procedure, if the cavity were
spherical. Thus, the CSC method first disassembles the cavity
surface into atomic spheres in order to define matrix elements,
then reassembles it to perform the PCM calculation. (This is
the “separation between model and cavity” emphasized by

SF.11, 12) Numerical results,12 using several of the same nu-
merical tests that we used in Ref. 2, appear to be in reason-
able agreement with SWIG results. This makes some sense in
view of the fact that the definition in Eq. (3) is obtained from
a model of a strictly spherical cavity surface.5

In summary, the subSWIG model studied in Ref. 2 is not
equivalent to the CSC discretization procedure, yet the for-
mer plays an important role in the development of smooth
PCMs, as it demonstrates the incompatibility of switching
functions with the widely used sum rule in Eq. (2). Our SWIG
discretization method2 avoids the numerical problems associ-
ated with this sum rule. Calculations performed thus far sug-
gest that the SWIG approach, while formally distinct from the
CSC method,11 is numerically quite similar, and an explana-
tion for this observation is suggested herein.
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