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ABSTRACT: A previous analytical investigation of the generalized Born (GB) implicit solvation model is extended to solvents
of nonzero ionic strength. The GB model with salt effects (GB-SE) is shown to resemble the Debye−Hückel-like screening
model (DESMO), a polarizable continuum model (PCM) that we have recently developed for salty solutions. DESMO may be
regarded either as a generalization of the conductor-like PCM (C-PCM) that extends C-PCM to electrolyte solutions or
alternatively as a generalization of Debye−Hückel theory to arbitrary cavity shapes. The connection between GB-SE and
DESMO suggests how the former can be modified to account for the exclusion of mobile ions from the cavity interior, an effect
that is typically absent in GB-SE models. We propose two simple GB-SE models that are exact for a point charge in a spherical
cavity and that introduce the ability to account, albeit approximately, for the finite size of the mobile ions. The accuracy of these
new models is demonstrated by applications to both model systems and real proteins. These tests also demonstrate the accuracy
of the DESMO approach, as compared to more sophisticated PCMs developed for electrolyte solutions.

I. INTRODUCTION

Implicit solvent models, in various flavors,1−15 represent an
efficient means to incorporate bulk solvent effects without the
computational burden of an atomistic representation of the
solvent. Most commonly, these models treat the solvent as a
homogeneous dielectric medium, such that classical (continu-
um) electrostatics can be applied to compute the solvent
reaction field arising from dielectric polarization by the solute.
In biomolecular and other macromolecular systems in

aqueous solution, “mobile” ions from a dissolved electrolyte
often have profound influence on structural and dynamical
properties,16−21 so it is important to extend implicit solvent
models to solvents with finite ionic strength. Assuming that the
distribution of mobile ions is thermalized, the electrostatic
interaction between the solute and the dielectric continuum is
governed by the (nonlinear) Poisson−Boltzmann equation.5−7

When the relevant Boltzmann factors are truncated at first
order, one obtains the linearized Poisson−Boltzmann equation
(LPBE),22

κ∇̂ − ⃗ =U r( ) ( ) 0
2 2

(1.1)

where U(r)⃗ is the total electrostatic potential. The LPBE
assumes that the solvent is characterized by a dielectric constant
(relative permittivity) denoted by ε and a Debye length λ that is
related to the solvent’s ionic strength, , according to
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The quantity κ is known as the inverse Debye screening length. In
this work, we will assume that the solute is separated from the
dielectric medium by a sharp cavity boundary, with a dielectric
constant of ε outside of the cavity and a dielectric constant of
unity inside, the latter consistent with an explicit, atomistic
treatment of electrostatics within the cavity. The theory could

be adapted for a different value of the dielectric constant within
the cavity.23

Methods of varying sophistication exist for solving either the
linear or nonlinear Poisson−Boltzmann equation. Here, we
focus on a class of methods known as polarizable continuum
models (PCMs),14 or more specifically, “apparent surface
charge” PCMs.13,14 In general, these models afford only an
approximate solution for the solute polarization effects
described by the LPBE, but they are computationally efficient
as compared to three-dimensional volumetric integration of eq
1.1 and are furthermore exact in important special cases. PCMs
of this sort are most often encountered in the context of
electronic structure calculations (i.e., quantum-mechanical
solutes), although they have recently become available for
molecular mechanics applications within the Q-Chem software
package.24−27 In this work, our aim is to connect these methods
to variants of the generalized Born (GB) model,2,10,28,29 the
most widely used implicit solvation model in classical
biomolecular simulations.
Recently,30 we presented a formal proof that the GB model,

under certain reasonable assumptions, is equivalent to the so-
called conductor-like PCM (C-PCM).31 This model is itself
equivalent to the earlier “generalized COSMO” model,32,33

which is a slightly modified version of the original conductor-like
screening model (COSMO) of Klamt and Schüürman,34 one of
the first PCMs to see widespread use. The GB/C-PCM
equivalence rests on the following assumptions:30

(1) that the definition of the solute cavity is the same in both

cases,
(2) that the GB model uses “perfect” effective Born radii, and

(3) that the pairwise ef fective Coulomb operator of GB theory

is correct in the conductor limit.
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The first assumption can be satisfied by construction. As for
the second assumption, practical approximations can be
found28,29,35−46 for the so-called perfect radii,44 at least some
of which appear to be quite accurate in practice.30,46 When
perfect radii are used in the GB formalism, any error in the
solvation energy is attributable solely to the choice of the
effective Coulomb operator that is used in the pairwise-additive
GB energy formula.30 As such, it makes sense to insist on the
correct conductor limit, since ε = 78.4 (water) is not so far, in
practice, from this limit.26

In view of the aforementioned equivalence, C-PCM
establishes a theoretical limit on the accuracy attainable from
GB models, at least with regard to how well these models
approximate the polarization energy obtained from Poisson’s
equation. Recently, we have introduced the Debye−Hu ̈ckel-like
screening model (DESMO),47 which generalizes C-PCM/
GCOSMO to solvents with nonzero ionic strength, within
the approximation defined by the LPBE. (From another point
of view, the DESMO approach extends the analytic Debye−
Hückel theory,48 which is valid only for spherical cavities, to a
numerical theory that is valid for arbitrary cavity shapes.) The
purpose of this work is to extend our analysis of the GB/C-
PCM equivalence to a comparison between DESMO and the
conventional GB model with salt effects (GB-SE).
For κ > 0, however, we are unable to demonstrate an exact

mathematical equivalence between GB-SE and DESMO, but we
are able to illustrate an approximate relationship between the
two models, which holds up to numerical scrutiny as well. The
similarity between the two models allows us to incorporate
exclusion of the “mobile” (salt) ions into GB-SE models, in a
manner similar to how ion exclusion is treated in DESMO. In
previous GB-SE methods, ion exclusion is either lacking
altogether or else is approximated by empirical scaling of κ.49,50

Our presentation is organized as follows. After a brief review
of the theory behind GB models and DESMO, we then develop
a formal comparison between the two and show how the
traditional GB-SE model fails to incorporate ion exclusion. This
leads us to introduce a simple correction factor to account for
this effect. Along these lines, we also propose an alternative
form of GB-SE that is more efficient to compute, and which is
exact for GB-SE self-energies although approximate for the
pairwise energies. We next compare our proposed GB-SE
models to some earlier ones in a series of tests on model
systems, and also on a set of small proteins. Throughout this
work, atomic units are used in the equations (so there is no
4πε0 in the Coulomb potential), but numerical results are
presented in kcal/mol.

II. COMPARISON OF PCM AND GB THEORIES

A. Brief Review of Previous Work. We first review some
important points from our previous study.30 In GB models as
well as PCMs, the total electrostatic energy of the solute +
continuum system is partitioned into two contributions,

= +G G Gtot 0 pol (2.1)

where G0 is the gas-phase electrostatic energy of the solute
charge density, ρ(r)⃗, and Gpol is the polarization energy arising
from the interaction of ρ(r)⃗ with the solvent reaction field. If
ρ(r)⃗ is comprised of atom-centered point charges,

∑ρ δ⃗ = ⃗ − ⃗r q r r( ) ( )
i

i i
(2.2)

then the polarization energy can be written as a pairwise sum
over atoms,

∑=G G
1
2 i j

ijpol
,

pol,
(2.3)

By the symmetry of the Coulomb interaction, Gpol,ij = Gpol,ji.
The decomposition in eq 2.3 is equally valid in both GB and

PCM theory.30 In the former case, we will denote the pairwise
polarization energies as Gpol,ij

GB , which can be equated with their
PCM counterparts, Gpol,ij

PCM, assuming that the same solute cavity
is used in both models. Thus, we have

=G Gij ijpol,
GB

pol,
PCM

(2.4)

with

∫ σ ϕ= ⃗ ⃗ ⃗G s s sd ( ) ( )ij i jpol,
PCM

(2.5)

The quantity σi(s)⃗ is the portion of the total surface charge
density at a point s ⃗ on the cavity surface that is induced by qi,
and ϕj(s)⃗ is the vacuum electrostatic potential at s ⃗ that is
generated by qj:

ϕ ⃗ =
| ⃗ − ⃗|

s
q

r s
( )j

j

j (2.6)

The total surface potential at s ⃗ is ϕ(s)⃗ = ∑iϕi(s)⃗, and the total
surface charge density is σ(s)⃗ = ∑iσi(s)⃗.
The simplest example of a PCM is obtained when the

medium is a conductor (ε = ∞), and this is a useful limit in the
discussion below. In the conductor limit, the apparent surface
charge PCM is defined by the equation

σ ϕ̂ ⃗ = − ⃗S s s( ) ( )cond
(2.7)

where S ̂ is a self-adjoint integral operator that maps a surface
charge density onto the corresponding electrostatic potential,

∫σ σ̂ ⃗ = ⃗′ ⃗′
| ⃗ − ⃗′|

S s s
s

s s
( ) d

( )
(2.8)

The C-PCM approach is “conductor-like” in the sense that its
working equation is very similar to eq 2.7, differing only by an
ε-dependent scaling of the total surface charge:

σ ε ϕ̂ ⃗ = − ⃗‐ −S s s( ) ( 1) ( )C PCM 1
(2.9)

C-PCM is therefore exact in the conductor limit, and one
expects that its accuracy should improve as ε increases. This
expectation is borne out in numerical calculations.26

B. Debye−Hückel-Like Screening Model. The primary
working equation in DESMO that is solved for the apparent
surface charge density is47

σ γ
ε

ϕ ϕ̂ ⃗ = ⃗ ⃗ − ⃗κS s
s

s s( )
( )

( ) ( )DESMO
(2.10)

This equation involves the screened electrostatic potential, ϕκ,
arising from the solute charge density, ρ(r)⃗. The screening
involves the same attenuated Coulomb potential that appears in
Debye−Hückel theory:

∫ϕ ρ⃗ = ⃗ ⃗
| ⃗ − ⃗|

κ
κ− | ⃗− ⃗|

s r r
r s

( ) d ( )
e r s

(2.11)

For a solute composed of classical point charges, we can rewrite
eq 2.10 as an equation for σi,
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The quantity γ(s)⃗ in eqs 2.10 and 2.12 is known as the ion
exclusion factor,47 because it alone accounts for the reduction in
Debye screening that results from the fact that the “mobile”
solvent ions are forbidden from penetrating the cavity interior.
If ion exclusion is ignored altogether (γ ≡ 1), then one is
effectively permitting an unphysical scenario in which some
mobile ion charge density exists within the cavity interior. Note,
however, that in the salt-free limit (κ → 0), one does obtain
γ(s)⃗ ≡ 1. DESMO reduces to C-PCM in the same limit, and
becomes exact in the limit ε → ∞. DESMO is also exact,
independent of ε, for the model problem of a point charge
centered in a spherical cavity, the same model considered by
Debye and Hückel.48

For more complex cavity shapes, a practical complication is
that the exact function γ(s)⃗ is not available (or, at least, is very
complicated). This led us to propose a local ion-exclusion layer
(LIEL) approximation for use with DESMO.47 This approach is
exact in the case of a point charge centered in a spherical cavity
but approximate in other cases. For a point s ⃗ on the ith atomic
sphere (whose radius is denoted Ri), the LIEL approximation
amounts to an ion exclusion factor of the form

γ
κ

κ
⃗ =

+
+ +

⃗ ∈
κ

s
R

R R
s i( )

(1 ) e
1 ( )

for
R

i

LIEL ion

ion

i

(2.14)

Here, Rion is the radius of the mobile ions, which are assumed to
be identical. (The quantity Rion defines the thickness of the
Stern layer that surrounds the solute cavity.)
In ref 47, we showed that the LIEL approximation is

significantly more accurate than simply ignoring ion exclusion
altogether (γ ≡ 1, an approximation that we previously dubbed
“DESMO-0”). Hereafter, we will continue to use “DESMO” to
refer to the general PCM given by eq 2.10, but when we discuss
numerical results that invoke the LIEL approximation, we will
refer to the model as DESMO-LIEL to distinguish it from
DESMO-0, where ion exclusion is neglected.
C. Connection between GB-SE and DESMO. Assuming

that the solute charge density is given by eq 2.2, the pairwise
polarization energy between atoms i and j in DESMO is23

∫
∫

ϕ ϕ

ε
ϕ γ ϕ
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−
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i j
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1

(2.15)

Let us rewrite eq 2.15 in a way that better facilitates comparison
to GB theory. To do so, we exploit the charge density in the
conductor limit, σcond(s)⃗ = −S−1ϕ(s)⃗, to obtain

∫

∫

σ

ε
σ

γ

= ⃗ ⃗
| ⃗ − ⃗|

− ⃗ ⃗
⃗

| ⃗ − ⃗|
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q

r s

s s
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r s

d ( )

1
d ( )

( ) e
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j

j

i
j

r s

j

pol,
DESMO cond

cond
j

(2.16)

Note that all of the dependence on κ is contained in the second
term, which we call the salt term.

We are now in a position to relate DESMO to GB-SE. The
first step is to recognize that the first term in eq 2.16 is just the
pairwise polarization energy in a conductor,

∫ σ= ⃗ ⃗
| ⃗ − ⃗|

G s s
q

r s
d ( )ij i

j

j
pol,
cond cond

(2.17)

In GB theory, the pairwise energy for a conductor is expressed
as

ε= − → ∞∞G
q q

f
forij

i j

ij
pol,
GB

(2.18)

where, as in our previous study,30 1/f ij
∞ denotes the effective

Coulomb operator evaluated in the conductor limit. This
operator can be related to PCM theory exactly.30 It is given by

∫ ϕ ϕ= − ⃗ ̃ ⃗ ̂ ̃ ⃗∞
−

f
s s S s

1
d ( ) ( )

ij
i j

1

(2.19)

where ϕ̃j(s)⃗ = |rj⃗ − s|⃗−1. For i = j (the self-energy), eqs 2.18 and
2.19 can be used to compute perfect effective Born radii for
arbitrary cavity shapes, by using C-PCM calculations to evaluate
the integral in eq 2.19.30

Perusing the equations above, it is tempting to want to
“replace” |rj⃗ − s|⃗−1 in eq 2.17 with 1/f ij

∞, to provide an effective
Coulomb interaction between the surface charge density
σi
cond(s)⃗ and the atomic point charge qj. One is then further
tempted to substitute −qi in place of ∫ ds ⃗ σicond(s)⃗ in eq 2.17,
which is akin to applying Gauss’ law to the ith atom in the
conductor limit to arrive at a uniformly distributed total
effective surface charge. These replacements would have the
effect of converting eq 2.17 into the form of eq 2.18, albeit not
in a mathematically rigorous way.51 [For example, eq 2.19
suggests that 1/f ij

∞ should depend in some way on cavity shape,
but one ignores this dependence in decoupling 1/f ij

∞ from
σi
cond(s)⃗ in the integrand of eq 2.17.]
However, applying the aforementioned substitutions to eq

2.16 does allow us to construct a model, which we may then
attempt to rationalize and ultimately validate with numerical
calculations. According to this model, the pairwise-additive GB-
SE energy takes the form

γ

ε
κ= − − −−

∞
∞⎡

⎣⎢
⎤
⎦⎥G

q q

f
f1 exp( )ij

i j

ij

ij
ijpol,

GB SE

(2.20)

where we have also replaced γ(s)⃗ in eq 2.16 with γij. Equation
2.20 is the ansatz that serves as a starting point for the GB-SE
models developed in this work. A crucial aspect of these models
is the choice of ion exclusion factors, γij, which is discussed in
section III. We note also that a somewhat more sophisticated
form of GB theory developed by Onufriev and co-workers,50,52

known as the GBε model, could be modified analogously,
insofar as GBε replaces ( f ij

∞)−1 with a factor (1 + α/
ε)−1[( f ij

∞)−1 + α/εA], where α and A are additional parameters.
The same substitution can, if desired, be applied to the model
in eq 2.20. This is discussed further in section III.B.
Substitution of eq 2.19 into eq 2.20 does not yield eq 2.16

exactly, so we have not established any rigorous mathematical
equivalence between DESMO and GB-SE. Nevertheless, the
resemblance between the two is uncanny. Note that in the limit
κ → 0, eq 2.20 reduces to the conventional salt-free pairwise
GB energy. DESMO reduces to C-PCM in the same limit, as
discussed above. As such, we anticipate that when the salt
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concentration is low (the regime in which the LBPE is
appropriate), the GB-SE model suggested in eq 2.20 may be
similar to DESMO.
Further arguments in favor of the model defined by eq 2.20

can be made by considering two limiting cases that GB theory
is intended to capture correctly. First, consider the case of a
single point charge, qi, centered in a sphere of radius Ri. In this
case, the conductor surface charge is uniformly distributed,
σi
cond(s)⃗ = −qi/∫ ds,⃗ where the denominator is simply the cavity
surface area. Furthermore, for this special case, one has |ri⃗ − s|⃗ =
Ri, and γ(s)⃗ is a constant that we denote by γii. Under these
conditions, eq 2.16 becomes

γ
ε

κ= − − −
⎡
⎣⎢

⎤
⎦⎥G

q

R
R1 exp( )ii

i

i

ii
ipol,

DESMO
2

(2.21)

This expression does indeed have the form of eq 2.20, provided
that 1/( f ii

∞) = Ri
−1.

Next, consider the case of two charges qi and qj located at ri⃗
and rj⃗, centered in disjoint spherical cavities whose radii are Ri
and Rj, respectively. Let the two charges be sufficiently well
separated, so that |ri⃗ − rj⃗| ≫ Ri + Rj. In this case, the surface
charge σi

cond(s)⃗ induced by qi is confined to the surface of the ith
sphere, and from the vantage point of rj⃗ it should appear that
σi
cond(s)⃗ ≈ − qi, because this is the total surface charge on
sphere i according to Gauss’ law. Since σi

cond(sj⃗) ≈ 0 for any
point sj⃗ on the surface of sphere j, we may neglect the
integration over the surface of sphere j in eq 2.16. Given the
separation of the charges, we can also approximate |ri⃗ − sj⃗| ≈ |ri⃗
− rj⃗|, and furthermore γ(s)⃗ becomes some constant, which we
will call γij. (This last point requires that the separation between
the spheres is large compared to the radius of the mobile ions,
but for |ri⃗ − rj⃗| ≫ Ri + Rj this is a realistic approximation.)
Putting this all together, eq 2.16 becomes

γ

ε
κ≈ − − −

⎡
⎣⎢

⎤
⎦⎥G

q q

r
r1 exp( )ij

i j

ij

ij
ijpol,

DESMO

(2.22)

This should be a good approximation when ri⃗j = |ri⃗ − rj⃗| ≫ Ri +
Rj. Comparison to the model in eq 2.20 therefore suggests that
f ij
∞→rij in the limit that rij ≫ Ri + Rj.
The two limits established by these special cases are

→ → ∞∞f r rasij ij ij (2.23a)

→ →∞f R ras 0ij i ij (2.23b)

In fact, these are precisely the two limits in which the exact
effective Coulomb operator is known analytically.30 In
particular, for rij = 0, eq 2.23b affords the correct result for a
charge centered in a sphere. The model defined by eq 2.20
therefore has the correct form in these two important limits. As
such, we could have arrived at eq 2.20 by first considering these
two limits, then asking how one might interpolate between
them within a GB-like formalism. The answer is to introduce a
function f ij

∞ that interpolates between Ri and rij. It remains,
however, to define the ion exclusion factors γij. This is the topic
of the next section.

III. ION EXCLUSION
A. Traditional GB-SE Models. Let us consider the

importance of ion exclusion in eq 2.20. If we take γij = 1,
then we recover the traditional equation for GB-SE, which we
will call GB-SE0:

ε κ= − − −‐
∞

− ∞G
q q

f
f[1 exp( )]ij

i j

ij
ijpol,

GB SE0 1

(3.1)

This equation was obtained previously by Srinivasan et al.49

without any notion of DESMO or any other PCM. (In
addition, the derivation in ref 49 does not make explicit the fact
that the effective Coulomb operator should be evaluated in the
conductor limit, which only becomes clear once the connection
to C-PCM is made.) The notation GB-SE0 reflects an analogy
to a method that we have previously termed DESMO-0,47 in
which γ(s)⃗ ≡ 1. As discussed above, this approximation ignores
the fact that the mobile solvent ions of Debye−Hückel theory
should be prevented from penetrating into the interior of the
solute cavity. Numerical calculations reveal that the DESMO-0
approximation overestimates salt effects,47 consistent with
additional screening arising from the mobile ion density within
the solute cavity.
Srinivasan et al.49 recognized that eq 3.1 also overestimates

salt effects, as compared to numerical solution of the LPBE, and
speculated that this might be due to the fact that there is no
concept of ion exclusion in eq 3.1. To compensate, they
propose to scale κ, which is determined by eq 1.2, by an
empirical factor of 0.73. (This type of empirical screening has
also been adopted to extend the GBε model to salty
solutions.50) Replacing κ by 0.73κ reduces the Debye screening
of the Coulomb interaction and is equivalent, in the present
notation, to using eq 2.20 with ion exclusion factors

γ κ= ∞fexp(0.27 )ij ij
scale

(3.2)

We will refer to the GB-SE model of eq 2.20, with ion exclusion
factors defined by eq 3.2, as the GB-SE(scaled) model.
It is important to emphasize that eq 3.1with or without

empirical scalingdoes not provide the correct energy for a
point charge centered in a spherical cavity, nor does it
incorporate any concept of a finite radius for the mobile ions. In
fact, the polarization energy can be computed exactly from the
LPBE for a point charge qi centered in a spherical cavity, taking
full account of ion exclusion. This is precisely the model
problem solved by Debye and Hückel.48 For a cavity of radius
Ri and mobile ions of radius Rion, the result is47,48

ε
κ

κ κ
= − −

+
+ +

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟
⎤
⎦
⎥⎥G

q

R
R

R R2
1

1 1
1

i

i i
pol
DH

2
ion

ion (3.3)

It is informative to expand the factor in parentheses as a Taylor
series about κ = 0:

ε κ κ

κ

= − − − + +

+

−G
q

R
R R R R

2 {1 [1 ( )

( )]}

i

i
i i ipol

DH
2

1 2 2
ion

3
(3.4)

Applying the GB-SE0 model [eq 3.1] to this same problem,
recognizing that f ii

∞ = Ri [eq 2.23b], one obtains

ε κ κ κ

=

− − − + +

‐

−⎧⎨⎩
⎡
⎣⎢

⎤
⎦⎥
⎫⎬⎭

G

q

R
R R

2
1 1

1
2

( )i

i
i i

pol
GB SE0

2
1 2 2 3

(3.5)

This result agrees with the exact Debye−Hückel solution
through (κ), as noted previously.2,49 However, since these
previous treatments did not consider ion exclusion, it bears
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pointing out that agreement through (κ) holds regardless of
the value of Rion. Finite ion size enters the Debye−Hückel
formula only at (κ2).
On the other hand, the empirical scaling suggested by

Srinivasan et al.49 affords the following approximation for the
Debye−Hückel polarization energy:

γ ε κ κ= − − − +‐ −G
q

R
R

2
{1 [1 ( )]}i

i
ii ipol

GB SE(scaled)
2

scale 1 2

(3.6)

The agreement with the exact result through (κ) is spoiled by
empirical scaling.
Further consideration of the Debye−Hückel model problem

demonstrates that the electrostatic potential u(r) at a distance r
≥ Ri + Rion from the center of the sphere is47,48

κ
ε κ

=
+ −

+ +
u r

q R R r

r R R
( )

exp[ ( )]

[1 ( )]
i i

i

ion

ion (3.7)

Recasting this as

γ
ε

=
κ−

u r
q

r
( )

ei
rDH

(3.8)

where

γ
κ
κ

=
+

+ +
R R
R R

exp[ ( )]
1 ( )

i

i

DH ion

ion (3.9)

defines both the screened Coulomb operator (e−κr/r) and the
ion exclusion factor (γDH) for Debye−Hückel theory.
In Figure 1, we plot the ratios γii

scale/γDH and 1/ γDH as
functions of κRi. These two ratios provide a measure of how the

ion exclusion factors for the GB-SE(scaled) and GB-SE0
models, respectively, deviate from the exact result, for a point
charge in a spherical cavity. In the case of GB-SE0, this
deviation is rapid and significant, despite the fact that the model
is correct through (κ). The GB-SE(scaled) result remains
close to the Debye−Hückel result (that is, γiiscale/γDH ≈ 1) for
somewhat larger values of κRi, but its accuracy drops off sharply
for values of κRi ≳ 1.5
The lack of agreement between these GB-SE models and the

exact Debye−Hückel result is unsatisfactory from a theoretical
perspective but can be remedied in a straightforward fashion.
Recognizing that DESMO is exact for the Debye−Hückel
model problem, and comparing eq 2.10 for DESMO to eq 2.20
for GB-SE, it is clear that one must set

γ γ=ii
DH

(3.10)

to ensure that GB-SE reduces to the correct Debye−Hückel
solution in the limit rij → 0. (For nonspherical cavities, we
assume that the radius Ri that appears in γDH is the effective
Born radius for atom i.) For i ≠ j, the best choice for γij is not
so obvious and in fact need not be a constant, since γ(s)⃗
depends on cavity shape. Nevertheless, we propose the
following very simple generalization of eq 3.10:

γ γ γ= +( )/2ij ii jj (3.11)

The rationale for selecting an arithmetic average over, say, a
geometric mean is discussed in the Appendix. Note that the
factors γii/2 can be computed outside of the pairwise GB loop,
so that the computational overhead associated with ion
exclusion is minimal. We will refer to eq 2.20, with γij as
defined in eqs 3.10 and 3.11, as the GB-SEγ model.
Finally, we propose an alternative way to incorporate ion

exclusion into GB-SE that is designed to reduce the
computational cost. As in our previous efforts to accelerate
traditional GB calculations,30 the goal is to avoid the costly
exponential function that appears in eq 2.20. However, we wish
to retain the Debye−Hückel limiting case for the self-energy.
Our proposal is to write the GB-SE pairwise energy as [cf. eq
3.3]

κ
ε κ κ

= − −
+

+ +
‐

∞ ∞

⎛
⎝
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q q

f
R

f R
1

1
(1 )ij

i j

ij ij
pol,
GB SE(alt) ion

ion (3.12)

We refer to this model as GB-SE(alt). The computational
simplification as compared to eq 2.20 should be readily
apparent. Although the self-energies Gpol,ii

GB‑SE(alt) are exact for the
limiting Debye−Hückel case, the pairwise interactions
Gpol,ij
GB‑SE(alt) are screened slightly less than they should be (cf.

eq 2.22). However, upon Taylor expansion of eq 3.12 about κ =
0, the GB-SE(alt) model is found to agree with eq 2.22 through
(κ); hence we might expect this model to be reasonably

accurate for low salt concentrations.
Consider GB-SE(alt) in comparison with the GB-SE0 model

defined by eq 3.1, which is also correct through (κ) for the
Debye−Hückel model problem. The GB-SE0 formula should
be accurate for distal pairwise interactions but correct only to
(κ) for the self-energy (i = j) terms. For GB-SE(alt), the

opposite is true: this model is exact for the self-energy but
correct only to (κ) for distal pairwise interactions. If one is
content with errors of (κ2), then GB-SE(alt) is a much better
choice than GB-SE0 because it is computationally more
efficient, and it has the ability to incorporate finite size for
the mobile ions. We have found that, when carefully coded,
Gpol,ij
GB‑SE(alt) can be computed roughly 50% faster than Gpol,ij

GB‑SE0, as
a result of eliminating the exponential function call.

B. GBε-SE Models. So far, we have considered electrolytic
extensions of the conventional GB model. As mentioned above,
however, Onufriev and co-workers have introduced a somewhat
more sophisticated GB model that they call GBε.52 Later, the
GBε model was generalized to include salt effects, and this new
model (which might be called GBε-SE, in the language of the
present work) was termed the analytical linearized Poisson−
Boltzmann (ALPB) model.50 The ALPB model was obtained by
modifying the traditional GB ansatz based on consideration of
Kirkwood’s analytic solution for an arbitrary multipolar
distribution inside of a spherical cavity.53 The resulting pairwise

Figure 1. Relative error in the ion exclusion factor used in the GB-SE0
and GB-SE(scaled) methods, as compared to the exact Debye−Hückel
result. The system consists of a point-charge solute centered in a
spherical cavity, with Rion = 0. Note that γii ≡ 1 for the GB-SE0 model.
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polarization energy expression, including the correction for salt
effects, is50

α ε ε
=

−

+
−

κ−

∞

∞⎛
⎝⎜⎜

⎞
⎠⎟⎟G

q q

F1 /
1

e 1
ij

i j
f

ij
pol,
ALPB ij

(3.13)

where

α
ε

= +∞ ∞F f A
1 1

ij ij (3.14)

The quantities α and A are discussed below. Consistent with
the rest of this work, we assume a dielectric constant of unity
inside of the cavity, although eq 3.13 is easily modified to lift
this restriction. In addition, we have introduced f ij

∞ into eq 3.13,
which is not a part of the original ALPB model. Based upon the
relevant asymptotic limits that ALPB is meant to capture,
however, it is clear that this is appropriate.
The (nonadjustable) parameter α in eq 3.13 is a key part of

the ALPB derivation,50,52 and is meant to approximate the
factors of l/(l + 1) that appear (for l > 1) in the infinite
summation over multipole moments, l, in Kirkwood’s analytic
model.53 As such, α is a constant bounded between 1/2 and 1.
Onufriev and co-workers have suggested a value of α ≈
0.571412 for general purposes based on a thorough “first
principles” error minimization.50,52 The variable A in eq 3.13 is
known as the electrostatic size of the solute cavity and for a
spherical cavity is equal to the cavity radius. For more
complicated cavity shapes, approximations for A are em-
ployed.50

Focusing on salt effects in the ALPB model, we note that in
the limit α/ε→0, eq 3.13 reduces to eq 3.1, where the latter
defines the model that we call GB-SE0. This suggests that eq
3.13 does not account for ion exclusion and is therefore
incorrect even for the Debye−Hückel model problem. To
amend this, one might choose to replace κ with 0.73κ, a
procedure that was used in ref 50. Such empiricism, however,
feels counter to the underlying ab initio spirit in which the
ALPB model was derived and in any case does not afford the
correct solution to the Debye−Hückel model problem.
As an alternative, we propose to modify the ALPB model

along the same lines used to obtain the GB-SEγ and GB-SE(alt)
models proposed above. We therefore introduce an “ALPBγ”
model in which Debye−Hückel ion exclusion factors are
introduced into eq 3.13:
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The factors γij are defined by eqs 3.10 and 3.11, as in the GB-
SEγ model. A more computationally expedient version of eq
3.15 is
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(3.16)

The ALPBγ and ALPB(alt) models introduced here each afford
the correct solution for the Debye−Hückel model problem and
reduce to the GB-SEγ and GB-SE(alt) models, respectively, in
the limit α/ε → 0. The accuracy of these proposed
modifications to the ALPB model are examined numerically
in section IV.C.

IV. NUMERICAL TESTS

A. Computational Details. We next turn to testing the
GB-SE variants in comparison to PCMs. Rather than focusing
on absolute polarization energies as a gauge of accuracy, we will
focus on salt shifts

κ κΔ = −G G G( ) ( ) (0)pol pol (4.1)

We limit our tests to ε = 78.4, corresponding to water at room
temperature, and λ = κ−1 = 3 Å, corresponding (at room
temperature) to a ∼ 1 M solution of monovalent ions. Note
that typical physiological ionic strengths are much smaller,
typically 0.1−0.2 M,54 corresponding to λ ∼ 8 Å at room
temperature. Lower salt concentrations will reduce the salt
effects, relative to those reported here, but the higher salt
concentration provides a more rigorous test of the GB-SE
models.
The various GB-SE models introduced above will be

compared to PCM results using DESMO,47 and also to the
“screened” (finite ionic strength) version22,55,56 of the so-called
integral equation formalism (IEF-PCM).55−58 The screened IEF-
PCM constitutes an exact solution to the LPBE (within
numerical discretization error) so long as Rion = 0 and provided
that the solute charge density is contained entirely within the
cavity. (The latter assumption is satisfied trivially here, since we
only consider solutes composed of classical point charges.59)
We employ the switching/Gaussian (SWIG) discretization

procedure for the PCM calculations,24,25 which is available in
the Q-Chem software package.27 We have recently extended
the SWIG approach to compute analytical matrix elements for
the screened IEF-PCM.47 For the ion-pair model that is
considered in section IV.B, the cavity consists simply of two
spheres, but for the proteins in section IV.D we employ
Connolly’s “solvent excluded” cavity surface definition,60 with a
solvent probe radius of 1.4 Å, appropriate for water. The
average grid resolution of the discretized surfaces is 0.07 Å2 per
surface element. Matrix inversion, rather than iterative methods,
is used to solve the discretized version of eq 2.9.
The protein data set used in section IV.D is identical to the

“small protein training set” of ref 30, and details can be found in
Appendix C of that work. For all test systems, perfect effective
Born radii are obtained from C-PCM calculations, as described
previously,30 and are then used in the GB calculations. In
practical applications, it is necessary to employ fast analytic
expressions for approximate Born radii,29,35−37,40−43 which do
not require volumetric integration and yield analytic forces for
molecular dynamics. In our previous work on GB models,30

however, we showed that numerical results show only very
small differences if one substitutes so-called R6* radii46 in place
of perfect radii. The R6* radii are derived from a much-
simplified integral procedure45 and are efficient enough to be
used in much larger macromolecules. Analytic forces could
probably be obtained by application of appropriate switching
functions, as in the SWIG discretization approach. This remains
a topic for future work.

B. Ion-Pair Model. In this section, we consider the salt shift
as a function rij for a system of two elementary charges (qi = qj
= +e), each centered in a spherical cavity of radius 1.5 Å. In the
PCM calculations, the two spheres are allowed to inter-
penetrate (for rij < 3 Å) according to the SWIG method. For
the GB-SE calculations, we use the “canonical” effective
Coulomb operator introduced by Still et al.:28
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= + −f r R R r R Rexp( /4 )ij ij i j ij i j
Still 2 2

(4.2)

As defined in ref 28, the quantity Ri is the ef fective Born radius
for atom i, for which we use “perfect” radii.44 These can be
obtained from C-PCM calculations, and in particular from eq
2.19, since f ii

∞ = Ri
∞ is the perfect radius.30

We first consider the case in which solvent mobile ions are
assumed to have negligible size (Rion = 0). Salt shifts obtained
using various GB-SE models are plotted in Figure 2 along with

DESMO-LIEL and DESMO-0 results. We find that the theory
developed above is predictive of the observed trends. GB-SE0
agrees very closely with DESMO-0, both of which overestimate
the magnitude of the salt shift relative to more accurate47

DESMO-LIEL results. The empirically scaled result is incorrect
at rij = 0, as expected, but in fact differs from the DESMO-LIEL
result by a roughly constant shift across a broad range of rij. The
DESMO-LIEL, GB-SE(alt), and GB-SEγ models all obtain the
exact result at rij = 0. However, GB-SE(alt) diverges from
DESMO-LIEL as the distance increases, although it is no worse
than GB-SE(scaled). GB-SEγ is clearly the most accurate of the
GB-SE variants and is nearly identical to the DESMO-LIEL
result except for very small deviations around rij ≈ 0.5 Å.
Results are plotted in Figure 3 for the less common case in

which solvent mobile ions are assumed to have finite size,
namely, Rion = 2 Å. DESMO-0, GB-SE0, and GB-SE(scaled)

results are not shown, since these methods do not incorporate
ion exclusion and thus would predict the same salt shifts as
when Rion = 0; those shifts would be at least 0.5 kcal/mol too
large, in the present example. For the methods that do
incorporate ion exclusion, the trends are quite similar to those
observed when Rion = 0. For distances rij > 3 Å, where the two
spherical cavities are disjoint, the GB-SEγ and DESMO-LIEL
salt shifts are practically indistinguishable, whereas the GB-
SE(alt) salt shift differs by an approximately constant offset. At
shorter distances, where the spheres interpenetrate, discrep-
ancies between GB-SEγ and DESMO-LIEL are slightly larger,
but all three methods converge to the exact result for rij = 0, as
expected.

C. GBε-SE for a Spherical Cavity. Next, consider a
collection of point charges in a spherical cavity of radius A,
centered at the origin. For this special case, there are a number
of simple analytic formulas for GB models that we utilize here.
In the limit ε → ∞, the perfect radius associated with the ith
charge is45

= −∞R A r A/i i
2

(4.3)

where A is the radius of the sphere and ri is the distance
between the ith charge and the center of the sphere. The so-
called R6 radii are exact [equal to Ri

∞ from eq 4.3] in this
special case.45 In addition, the effective Coulomb operator

= +f r R Rij ij i j
sphere 2

(4.4)

is exact in the limit ε → ∞, provided that Ri = Ri
∞ from eq

4.3.45 In other words, these two formulas together yield f ij
∞ (eq

2.19) for spherical cavities.
We now investigate numerical results for the “sphere-15 Å”

test system of Onufriev and co-workers, which was used in ref
52 to test the GBε model. This system consists of a spherical
solute cavity centered at the origin with a radius A = 15 Å, in
which the solute is 11 point charges (with qi = +e for each),
located at Cartesian coordinates (±6 Å, 0, 0), (0, ± 6 Å, 0), (0,
0, 6 Å), (±12 Å, 0, 0), (0, ± 12 Å, 0), and (0, 0, ± 12 Å). For
the ALPB models discussed in section III.B, the parameter A is
simply the cavity radius, and we use α = 0.571412 as
recommended by Onufriev and co-workers.50,52 Born radii
are obtained from eq 4.3 and the effective Coulomb operator
from eq 4.4, to ensure that we have an exact f ij

∞ in these tests.
DESMO and IEF-PCM calculations are performed using a
Lebedev grid with 5294 points, for an average grid resolution of
0.534 Å2. As in the other tests, ε = 78.4 and λ = 3 Å. Ion
exclusion is ignored in this example (Rion = 0).
Numerical results for the aforementioned test system are

listed in Table 1. The IEF-PCM approach affords an exact
result up to discretization error, which should be quite small
given the grid resolution. The DESMO-LIEL results use a
modified version of the LIEL approximation (eq 2.14) in which
Ri = 6 Å rather 15 Å. The latter choice leads to significant error
because the solute charges are not centered in the spherical
cavity, a deficiency in the LIEL approximation that was noted in
our previous work.47 The radius Ri = 6 Å used to compute the
ion exclusion factors was selected as the average distance to the
cavity surface for solute charges located at (−6 Å, 0, 0) and
(−12 Å, 0, 0). As such, the DESMO-LIEL results are not as
rooted in first principles as other options, but this choice does
reduce errors in the salt shift, as compared to DESMO-0 results
that overestimate the salt shift.

Figure 2. Salt shifts for two solute charges separated by a distance rij,
for mobile ions of negligible size (Rion = 0). For rij < 3 Å, the spherical
cavities around the two charges interpenetrate.

Figure 3. Salt shift for two solute charges separated by a distance rij,
with a mobile ion radius Rion = 2 Å. For rij < 3 Å, the spherical cavities
around the two charges interpenetrate.
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The ALPB method (eq 3.13) is very accurate for the salt-free
case, exhibiting even better agreement with IEF-PCM than
DESMO in the limit κ → 0. We note that if we let α = 0 in
ALPB for the tests with κ = 0, the resulting polarization energy
(Gpol = −1378.17 kcal/mol) equals the C-PCM polarization
energy with negligible error, as predicted by the formal C-
PCM/GB equivalence.
For the salty case (λ = 3 Å), the ALPB methods in Table 1

differ as a result of different treatments of ion exclusion. The
original ALPB method (eq 3.13), which ignores ion exclusion
altogether, overestimates the salt shift by an amount
comparable to DESMO-0. Empirical scaling (replacing κ with
0.73κ) reduces this error only slightly. Our proposed
modifications to ALPB, however, show a much more
appreciable improvement, especially ALPB(alt), where the
results are nearly in agreement with IEF-PCM results. These
results suggest that ALPB calculations can be improved by
corrections for ion exclusion, which should be considered in
future tests for nonspherical cavities.

D. Protein Data Set. Finally, we consider a set of 16 small
proteins that are more representative of the type of systems for
which GB-SE methods are typically used. Although GB results
for small sets of macromolecules may not always be
representative of the performance for larger data sets,29 this is
the same data set that we recently used to assess GB and C-
PCM results in the salt-free case.30 Previous work on salt-free
GB models has suggested that the effective Coulomb operator
employed by Still et al.28 (eq 4.2) may not be the optimal
choice,30,61 and for calculations on the protein data set we
employ an alternative operator

ζ
= + +

−⎛
⎝
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⎞
⎠
⎟⎟f r R R

r

R R
1

16ij ij i j
ij

i j

p16

16

(4.5)

where ζ = 1.028 is an empirical parameter. This so-called “p16”
operator was introduced in ref 30 and shown to be slightly
more accurate than f ij

Still, both for the data set considered here
(which was used to optimize ζ, in the salt-free calculations of
ref 30) and also for a larger data set of proteins and nucleic
acids. If implemented carefully,30 f ij

p16 is also less expensive to
evaluate, by as much as a factor of 3 relative to f ij

Still.
We initially chose to use f ij

p16 here because it was the most
accurate of the analytic effective Coulomb operators that we
tested in ref 30. However, we have repeated the GB-SE
calculations in this section using f ij

Still, and we find that while the
absolute polarization energies obtained using f ij

Still are indeed
less accurate than those computed using f ij

p16, as judged by
comparison to exact IEF-PCM results, the salt shifts obtained
using either operator are remarkably similar, differing by ≲0.1
kcal/mol.
For comparison, we also report GB-SE salt shifts using the

exact effective Coulomb operator, f ij
∞, which can be computed

from C-PCM calculations for each atom pair, using eq 2.19.
(Analytic models such as f ij

p16 and f ij
Still are thus compromise

choices intended to mimic the data set of pairwise f ij
∞ values.30)

Table 1. Total Polarization Energies (Gpol) and Salt Shifts
(ΔG) for the “sphere-15 Å” Test System of Ref 52, in kcal/
mol

Gpol

method κ = 0 κ = (3 Å)−1 ΔG errora

IEF-PCM −1377.58 −1392.20 −14.62 0.00
DESMO-0 −1378.15 −1395.08 −16.93 −2.31
DESMO-LIELb −1378.15 −1393.80 −15.65 −1.03
ALPBc −1377.76 −1395.04 −17.28 −2.66
ALPB(scaled)d −1377.76 −1394.50 −16.74 −2.12
ALPBγe −1377.76 −1393.61 −15.85 −1.23
ALPB(alt)f −1377.76 −1392.19 −14.43 0.19

aError in ΔG with respect to the IEF-PCM result. bModified LIEL
approximation using Ri = 6 Å. cEquation 3.13. dEquation 3.13 with κ
replaced by 0.73κ. eEquation 3.15. fEquation 3.16.

Table 2. Protein Salt Shifts (in kcal/mol) for Mobile Ions of Negligible Size, Rion = 0

PCMs GB models using f ij
p16 GB models using f ij

∞

PDB code
DESMO-
LIEL DESMO-0

IEF-
PCM GB-SE0

GB-SE
(scaled) GB-SE (alt) GB-SEγ GB-SE0

GB-SE
(scaled) GB-SE (alt) GB-SEγ

1AJJ −5.32 −5.83 −5.56 −6.22 −5.07 −4.90 −5.12 −6.31 −5.12 −5.02 −5.17
1BBL −4.58 −5.16 −5.06 −5.37 −4.23 −4.37 −4.62 −5.59 −4.37 −4.65 −4.92
1BOR −3.16 −3.76 −4.00 −3.92 −2.89 −3.19 −2.93 −4.03 −2.96 −3.32 −2.98
1BPI −7.28 −7.90 −7.15 −8.11 −6.97 −6.80 −7.43 −8.25 −7.05 −6.98 −7.57
1CBN −0.63 −0.86 −0.91 −0.93 −0.64 −0.82 −0.62 −0.97 −0.66 −0.88 −0.60
1FCA −8.68 −9.27 −10.07 −9.39 −8.29 −7.84 −8.68 −9.49 −8.36 −7.94 −8.64
1FXD −30.90 −31.94 −29.23 −32.24 −30.04 −27.17 −31.06 −32.33 −30.10 −27.28 −30.88
1HPT −2.06 −2.62 −3.11 −2.74 −1.95 −2.35 −1.96 −2.93 −2.07 −2.56 −2.14
1MBG −16.19 −16.89 −15.46 −17.28 −15.45 −14.14 −16.43 −17.52 −15.60 −14.42 −16.79
1PTQ −10.58 −11.20 −10.05 −11.73 −10.33 −9.60 −10.66 −11.83 −10.38 −9.77 −10.87
1R69 −5.15 −5.74 −5.55 −5.99 −4.92 −4.96 −5.27 −6.14 −5.01 −5.14 −5.39
1SH1 −2.58 −3.09 −3.54 −3.34 −2.42 −2.71 −2.51 −3.45 −2.48 −2.84 −2.53
1UXC −7.11 −7.74 −7.11 −7.98 −6.83 −6.71 −7.25 −8.17 −6.94 −6.99 −7.58
1VII −3.70 −4.25 −4.66 −4.45 −3.40 −3.61 −3.74 −4.56 −3.46 −3.73 −3.86
1VJW −7.59 −8.31 −8.71 −8.57 −7.24 −7.16 −7.68 −8.68 −7.31 −7.29 −7.67
2ERL −6.33 −6.78 −6.14 −6.89 −6.16 −5.78 −6.34 −6.98 −6.21 −5.89 −6.38
MSDa 0.28 −0.31 −0.55 0.59 0.89 0.25 −0.62 0.58 0.79 0.21
MUDa 0.69 0.67 0.60 0.73 0.89 0.75 0.74 0.62 0.79 0.70
RMSDa 0.83 0.92 1.09 0.90 1.07 0.89 1.01 0.82 1.07 0.80

aMean signed deviation (MSD), mean unsigned deviation (MUD), and root-mean-square deviation (RMSD) with respect to IEF-PCM calculations.
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When f ij
∞ is employed, the salt-free GB energy expression

exactly reproduces the C-PCM energy, by virtue of the GB/C-
PCM equivalence.30

Last, we have also performed screened IEF-PCM calculations
for this data set, in order to gauge the accuracy of DESMO. For
Rion = 0, the screened IEF-PCM method affords the same
polarization energy as the LPBE, without the need for the ion
exclusion factors that are required for accuracy in DESMO
calculations.47 On the other hand, it is unclear how to
generalize the IEF-PCM approach to account for mobile ions of
finite size; hence, IEF-PCM calculations always tacitly assume
that Rion = 0. In addition, screened IEF-PCM calculations are
significantly more expensive than DESMO calculations, and the
IEF-PCM calculations reported here constitute the largest such
calculations, of which we are aware, both in terms of molecular
size (up to 997 atoms) and number of grid points (up to
45,328). Thus, they represent good benchmarks against which
to compare DESMO for large systems.
Salt shifts computed for the protein data set are listed in

Table 2 for the case Rion = 0. Since screened IEF-PCM affords
the exact result in this case, we also tabulate statistical
deviations for each method with respect to IEF-PCM.
Surprisingly, the DESMO-0 and DESMO-LIEL results are
about equally accurate, statistically speaking, albeit with mean
errors that tend in opposite directions. However, there is no
evidence of systematic deviations in either case, as may be
judged by the very similar mean unsigned errors (MUEs). The
GB-SE models exhibit somewhat larger errors with respect to
IEF-PCM, with the exception of the GB-SEγ model, whose
performance is comparable to DESMO-LIEL. This is true when
the exact effective Coulomb operator ( f ij

∞) is used, but also
when f ij

p16 is used instead, which is important since f ij
∞ is time-

consuming to compute and is therefore only useful as a
benchmark.
Next, we compute protein salt shifts for the case that Rion = 2

Å, using three methods that include corrections for ion
exclusion; results are listed in Table 2. Whereas the IEF-PCM
results are exact (up to discretization errors) when Rion = 0, for
mobile ions of finite size there exists no exact analytic result, to
the best of our knowledge. We do note that statistical
deviations between GB-SE(alt) and GB-SEγ results with
respect to DESMO-LIEL are slightly larger in these cases
than was observed for Rion = 0, especially when the analytic
Coulomb operator f ij

p16 is used rather than the exact f ij
∞.

Consistent with results for the ion-pair model (section IV.B),
the GB-SEγ model affords results that are statistically closer to
DESMO-LIEL as compared to GB-SE(alt).
Although total salt shifts predicted by the various GB-SE

models are in fairly decent agreement with one another, more
significant variations are observed if we decompose the salt shift
into self-energy (i = j) and pair-energy (i ≠ j) contributions. This
is done in Table 3, using f ij

∞ with Rion = 0. We expect that the
self-energy contributions are most accurate for the GB-SEγ
model, since this model affords the exact self-energy for the
Deybe−Hückel model problem, whereas GB-SE0 is correct
only through (κ). The GB-SE(alt) model has the same self-
energies as GB-SEγ, by construction.
Compared to GB-SEγ, GB-SE0 clearly overestimates the

magnitude of the self-energy contributions to the salt shift, by
∼8 kcal/mol on average. The scaling introduced in eq 3.2 has
the effect of reducing the magnitude of the self-energies (and
the pair energies as well), and GB-SE(scaled) self-energies are
significantly closer to GB-SEγ results.

As for pair-energy contributions, these are also largest for the
GB-SE0 model, and empirical scaling brings them closer to GB-
SEγ values. Recall that this empirical scaling was introduced in
the first place49 based on the recognition that the model that
we call GB-SE0 overestimates total salt effects. What does not
seem to have been recognized in ref 49 is that GB-SE0
overestimates both the self-energy and pair-energy terms, by a
fairly significant amount relative to GB-SEγ, yet because these
terms have opposite sign, the discrepancies tend to cancel. The
total salt shift evaluated using the GB-SE0 model is therefore
not so different from the GB-SEγ result.
To a lesser extent, the same observations are true for the

empirically scaled model, GB-SE(scaled): self-energies tend to
be more negative than GB-SEγ results, but pair energies are
more positive. However, these discrepancies largely cancel
when the total salt shift is evaluated. The GB-SE(alt) pair
energies, on the other hand, are quite close to GB-SEγ results
(Table 4). Unlike the self-energy terms, which have the same
form in GB-SE(alt) and GB-SEγ by construction, the fact that
the pair energies are in good agreement is not guaranteed by
the form of the model.
That the GB-SE0 model appears to exaggerate both self-

energy and pair-energy contributions to the salt shift arises
from the neglect of ion exclusion. Some sort of ion exclusion is
included in the empirically scaled GB-SE(scaled) model, albeit
in a roundabout way, yet self-energies and pair energies are still
slightly exaggerated as compared to GB-SEγ results. It seems
likely that the GB-SE0 and GB-SE(scaled) models may also
overestimate forces that arise from the polarization energy,
which is potentially a concern for molecular dynamics
simulations based on these models. Although total salt shifts
are quite similar among all of the GB-SE models considered
here, GB-SEγ affords the correct result for the Debye−Hückel
model problem without increasing the complexity of the basic
GB-SE ansatz. The GB-SE(alt) model, which affords similar

Table 3. Protein Salt Shifts (in kcal/mol) for Mobile Ions of
Size Rion = 2.0 Å

GB with f ij
p16 GB models using f ij

∞

PDB code
DESMO-
LIEL

GB-
SE(alt) GB-SEγ

GB-
SE(alt) GB-SEγ

1AJJ −4.45 −3.60 −4.79 −3.66 −3.88
1BBL −3.56 −3.10 −4.51 −3.24 −3.69
1BOR −2.24 −2.12 −2.93 −2.19 −1.67
1BPI −6.26 −5.33 −7.46 −5.42 −6.37
1CBN −0.25 −0.49 −0.84 −0.52 −0.06
1FCA −7.75 −6.36 −8.54 −6.42 −7.44
1FXD −29.33 −23.40 −30.54 −23.45 −28.90
1HPT −1.14 −1.48 −2.33 −1.59 −0.88
1MBG −15.00 −11.59 −16.24 −11.73 −15.46
1PTQ −9.54 −7.72 −10.49 −7.79 −9.53
1R69 −4.15 −3.68 −5.24 −3.77 −4.16
1SH1 −1.76 −1.75 −2.33 −1.81 −1.35
1UXC −6.05 −5.25 −7.32 −5.37 −6.32
1VII −2.79 −2.48 −3.51 −2.54 −2.77
1VJW −6.39 −5.53 −7.16 −5.60 −6.17
2ERL −5.64 −4.72 −6.27 −4.78 −5.49
MSDa 1.10 0.89 1.03 0.14
MUDa 1.18 0.89 1.22 0.26
RMSDa 1.88 0.93 1.83 0.32

aDeviations with respect to DESMO-LIEL.
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self-energies and pair energies as compared to GB-SEγ, actually
reduces the complexity of this ansatz.

V. CONCLUSIONS
We have investigated the generalization of GB theory to
electrolytic solvents, in comparison to the Debye−Hückel-like
screening model47 (DESMO) that generalizes the well-
established C-PCM method31−33 to solvents with nonzero
ionic strength. The methodology of GB with salt effects (GB-
SE), which is introduced here from a new theoretical
perspective, bears considerable formal similarity to DESMO
and, like DESMO, can be formulated in a way that has certain
correct formal limits. This formal comparison facilitates
development of simple corrections to improve traditional GB-
SE models by accounting for the exclusion of mobile ions from
the solute cavity, and a new model (called GB-SEγ) has been
developed along these lines. Unlike previous GB-SE
models,49,50 the GB-SEγ model does not invoke any empirical
scaling of the Debye screening length.
Preliminary tests on a small set of proteins show that GB-SEγ

performs well in comparison to DESMO calculations.
Admittedly, the total salt shifts predicted by the GB-SEγ
model are not considerably different from those obtained using
the empirically scaled model of Srinivasan et al.49 In a certain
sense, this is a validation of GB-SEγ, since the empirically scaled
model has been tested against grid-based finite-difference
Poisson−Boltzmann solvers and found to yield similar trends in
salt shifts for B-DNA.49 Unlike GB-SEγ, however, the
empirically scaled model is not exact for the Debye−Hückel
model of a single charge in a spherical cavity, and salt shifts
appear to result from error cancellation between exaggerated
self-energies and pair energies, which have opposite signs. As
such, the GB-SEγ approach is more appealing, from a
theoretical point of view. In future work, we plan to perform
extensive tests of these models against numerical Poisson−
Boltzmann results.
Finally, we have proposed an alternative approach, GB-

SE(alt), that avoids evaluating the exponential function and is
therefore much less costly to evaluate as compared to other
GB-SE methods, including GB-SEγ. By construction, the GB-
SE(alt) model affords the exact self-energy for the Debye−

Hückel model problem and is correct through (κ) in the pair
energies. Tests on a small set of proteins suggest that GB-
SE(alt) is slightly less accurate as compared to GB-SEγ, but
given its increased efficiency it may prove to be a useful tool for
implicit solvent calculations of large biomolecules in aqueous
environments with modest salt concentrations.

■ APPENDIX: COMBINATION RULES FOR γij
We take γii to be defined by the Debye−Hückel result [eq
3.10]. To define γij for i ≠ j, we seek a model with the following
properties:

• γij should be simple to compute.
• γij should reduce to γDH for i = j.
• Reasonable accuracy should be obtained in other cases.

Computational simplicity suggests that we should consider
choices that reuse γii and γjj according to some combination
rule, as is commonly done for the Lennard-Jones “sigma”
parameters in molecular mechanics force fields. Three simple
combination rules come to mind: the arithmetic, geometric,
and harmonic means:

γ γ γ= +( )/2ij ii ij
A

(A.1a)

γ γ γ= ( )ij ii ij
G 1/2

(A.1b)

γ γ γ= +− −2/( )ij ii ij
H 1 1

(A.1c)

Each of these is easy to compute and each reduces to γii for i =
j.
Here, we test the accuracy of these three combination rules

for a model problem consisting of two point charges centered
in disjoint spherical cavities. For Rion = 0, Lotan and Head-
Gordon (LHG) have derived an analytic solution to the LPBE
for this model problem,62 and this solution suggests an
approximation for the ion exclusion factor:

γ γ γ≈ij ii jj
LHG

(A.2)

The accuracy of this approximation improves as the distance
between the two cavities increases. This appears to be the limit
that γij should approach for large rij, but it is important to point

Table 4. Decomposition of Protein GB-SE Salt Shifts (in kcal/mol), Using f ij
∞ and Rion = 0.0 Å

self-energy pair energy

PDB code GB-SE0 GB-SE (scaled) GB-SEγa GB-SE0 GB-SE (scaled) GB-SE (alt) GB-SEγ

1AJJ −28.14 −23.16 −22.45 21.83 18.04 17.43 17.28
1BBL −33.80 −27.36 −27.34 28.21 22.99 22.69 22.42
1BOR −39.58 −32.61 −31.66 35.55 29.65 28.34 28.67
1BPI −45.01 −37.05 −36.02 36.76 30.00 29.04 28.45
1CBN −31.00 −25.54 −24.68 30.03 24.88 23.81 24.08
1FCA −37.95 −31.17 −30.22 28.46 22.81 22.28 21.59
1FXD −46.29 −37.95 −37.04 13.96 7.85 9.76 6.15
1HPT −47.99 −39.40 −38.42 45.07 37.33 35.86 36.28
1MBG −44.33 −36.63 −35.36 26.81 21.03 20.94 18.57
1PTQ −37.17 −30.67 −29.69 25.33 20.30 19.92 18.82
1R69 −50.84 −42.08 −40.55 44.70 37.07 35.41 35.17
1SH1 −34.66 −28.64 −27.57 31.22 26.16 24.73 25.04
1UXC −42.40 −34.71 −34.19 34.23 27.77 27.20 26.61
1VII −28.91 −23.66 −23.15 24.35 20.20 19.42 19.29
1VJW −42.16 −34.78 −33.58 33.47 27.48 26.29 25.92
2ERL −31.65 −25.90 −25.31 24.67 19.69 19.42 18.93

aGB-SE(alt) self-energies are identical to those for GB-SEγ, by construction.
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out that this is for the case of two ions fully exposed to the
solvent dielectric. Interactions between charged species that are
embedded well inside the solute cavity need not obey the same
limit.
Equation A.2 creates a conundrum. This equation cannot be

used as a combining rule because it does not afford the correct
limit (γDH) for the case i = j. One could devise a formula to
interpolate between γDH and γij

LHG as a function of rij, but this
only serves to complicate matters and reduce the efficiency of
the GB-SEγ model, which is counter to the spirit of keeping GB
models simple and efficient. Instead, we seek a compromise
from eq A.1 that is most similar to γij

LHG.
Let us set γij = exp(κRi)/(1 + κRi), as usual [eq 3.9 for Rion =

0], but set γjj = exp(aκRi)/(1 + aκRi), which is equivalent to
setting Rj = aRi for some scalar, a. We then compute γij
according to the combining rules in eq A.1. In Figure 4, we plot

the ratio of γij obtained in this way to γij
LHG, for a = 0, 1, and 2.

For a = 1, γii = γjj and all three combining rules are equivalent,
and this case serves simply as a point of comparison for the
cases where one sphere is larger than the other.
From Figure 4, we observe that all three ratios γij

X/γij
LHG (for X

= A, G, or H) converge to the proper limit as κRi→0. (The ion
exclusion factors should all be unity for κ = 0.) For finite values
of κRi, however, the ratios γij

X/γij
LHG differ from unity, and none

of the three combining rules mimics γij
LHG in an entirely

satisfactory way. However, the ratio γij
A/γij

LHG is closest to unity,
for both a = 0 and a = 2. As such, we propose the arithmetic
mean in eq 3.11 for computing γij for the GB-SEγ model. The
numerical tests in section IV demonstrate that this choice
provides reasonable accuracy for realistic applications.
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