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ABSTRACT Apparent surface charge, reaction-field solvation models often em-
ploy overlapping atomic spheres to represent the solute/continuum boundary.
Discretization of the solute cavity surface, however, results in a boundary-element
method that fails to afford a continuous potential energy surface for the solute.
Several proposed remedies for this problem, based upon switching functions for
the surface grid points and originally introduced for the conductor-like screening
model (COSMO), are generalized here to an entire class of polarizable continuum
models (PCMs). Gaussian blurring of the apparent surface charges proves to be
crucial in order to avoid singularities in the reaction-field matrix and spurious
oscillations in the energy gradient. The resulting “smooth PCMs” accelerate
convergence of geometry optimizations and eliminate spurious peaks in vibra-
tional spectra that are calculated by finite difference of analytic energy gradients.

SECTION Molecular Structure, Quantum Chemistry, General Theory

R eaction-field models are an efficient means to incor-
porate certain bulk solvent effects into electronic
structure and molecular mechanics (MM) calcula-

tions, without the need for configurational averaging over
explicit solvent molecules.1 Among the most popular such
methods are apparent surface charge (ASC) approaches,
commonly known as polarizable continuum models
(PCMs),wherein electrostatic interactionswith the continuum
aremodeledbya chargedensity,σ(s), at the surface ofa solute
cavity. Given the solute charge density, F(r), an integral
equation to determine σ(s) can be formulated based upon
approximate solution of Poisson's equation, subject to cavity
boundary conditions.1,2

The definition of the cavity boundary is a crucial aspect of
ASC PCMs. Most often, the solute cavity is constructed from a
union of atomic spheres,3,4 possibly augmented by some
additional spheres to smooth out any crevasses.5

(Isocontours of F have also been used,6,7 but this approach
significantly complicates the formulation of analytic energy
gradients, and is not considered here.) In any case, it is
necessary to discretize the cavity surface into a set of surface
elements centered at points ri and having areas ai. Upon
discretization, the integral equation forσ is replacedbya set of
coupled linear equations,

Kq ¼ Rv ð1Þ
that determine a vector q of surface charges located at the
points ri, whose interaction with F(r) represents the electro-
static part of the continuumsolvent effect. The vector v in eq1
consists of the solute's electrostatic potential at the surface
discretization points, while the matricesK and R characterize
a given PCM. Chipman2,7,8 has shown how a variety of
PCMs may be cast into the form of eq 1; in particular, the

conductor-like screening model (known as C-PCM or
COSMO),9,10 the “integral equation formalism” (IEF-PCM),11

and Chipman's “surface and simulation of volume polariza-
tion for electrostatics” [SS(V)PE] model2 all have this form.
The precise forms of K and R are detailed in ref 7 and
summarized in Table 1.

The issue addressed in the present work is that a straight-
forward implementation of eq 1 inevitably leads to disconti-
nuities in the potential energy surface of the solute, because
certain surface points ri will disappear within;or emerge
from;the interior of the solute cavity, as the solute atoms are
displaced. These discontinuities hinder geometry optimiza-
tions, or prevent them from converging at all, lead to energy
drift and other instabilities in molecular dynamics simula-
tions, and may introduce serious artifacts in vibrational
frequencies, especially when the latter are calculated by finite
difference, as is often the case for high-level electronic
structure methods.

There have been a few previous attempts to eliminate
these discontinuities,mostlywithin the context of COSMO, by
introducing switching functions to attenuate the surface ele-
ments as theypass throughcertainbuffer regions surrounding
each solute atom.12-15 We have observed, however, that
certain artifacts persist in some of these ostensibly smooth
PCMs. The key result of the present work is a reformulation
and generalization of one of these methods, to yield an
implementation of eq 1 that affords smooth potential energy
surfaces, and whose gradients are well behaved even as two
atoms are pulled apart.
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In our approach, the ith surface discretization point is
attenuated using a switching function

Fi ¼
Yatoms

J, iˇJ
f ðr̂iJÞ ð2Þ

that consists of a product of elementary switching functions, 0
e f(̂riJ) e 1. The dimensionless quantity r̂iJ describes the
location of the ith grid point within a buffer region around the
Jth atom. (Additional details are provided in the Supporting
Information.) The function Fi is identical to the switching
function used in the “smooth COSMO” (S-COSMO) model of
York and Karplus.12

In addition to discontinuities, ASC PCMs may suffer from
singularities in the Coulomb interactions between surface
charges, if the separation rij between two charges is small.
Switching functions actually exacerbate this problem, by
allowing closer approach of ri and rj. Again following York
andKarplus,12 we avoid such singularities by representing the
charge around the point ri as qi(ζi

2/π)3/2 exp(-ζi
2|r - ri|

2),
where ζi is a fixed parameter. Thematrix S that represents the
Coulomb interactions among the surface elements is taken to
be

Sij ¼ ð2=πÞ1=2ζiFi -1 i ¼ j
erfðζijrijÞ=rij i 6¼ j

(
ð3Þ

where ζij = ζi ζj/(ζi
2 þ ζj

2)1/2. Note that Sij is finite, even as
rijf0.Asdiscussed in theSupporting Information, the factorof
Fi
-1 is introduced into Sii in order to ensure that K-1 has a null

space corresponding to any “switched off” grid points (Fi=0),
so that Fi functions to attenuate the surface charges, albeit
indirectly, via the S matrix. As such, the dimension of the
matrices S, A, D, and K can be reduced to include only those
grid points for which Fi > δ, where δ is some finite drop
tolerance.

We refer to theattenuation schemebaseduponeqs2 and3
as the “Switching/Gaussian” (SWIG) approach. The SWIG-
COSMOmethod is identical to the S-COSMOmethod of York
andKarplus,12 except thatwe correct an error16 in thenuclear
gradients appearing in refs 12 and 17. The correct derivative
of Fi with respect to a perturbation of theMth nucleus is

rMFi ¼
Xatoms

K

∂f ðr̂iKÞ
∂r̂iK

ðrMr̂iKÞ
Yatoms

J 6¼K

f ð̂riJÞ ð4Þ

whence

rMSii ¼ -Sii
Xatoms

K

1
f ðr̂iKÞ

∂f ðr̂iKÞ
∂r̂iK

rMr̂iK

 !
ð5Þ

York and co-workers17 later suggested replacing the switching
function Fi with Fi

p, where p is an adjustable parameter for

which the value p = 0.25 was suggested. In our experience,
however, values of p 6¼ 1 introduce unwanted oscillations into
the energy gradient, as demonstrated below.

Extension of the SWIG procedure to SS(V)PE and IEF-PCM,
which is reported here for the first time, requires construction
of the matrix D in Table 1. The D and S matrices are related
according to1

Dij ¼ -n̂j 3
∂Sij
∂rj

ð6Þ

where n̂j is a unit vector normal to the cavity surface, at the
point rj. Using Sij from eq 3, one obtains

Dij ¼ erfðζijrijÞ-
2ζijrijffiffiffi

π
p e-ζij

2rij2

 !
n̂j 3 rij
rij3

ð7Þ

where rij = ri - rj. The gradient with respect to nuclear
displacements is

rMDij ¼ - Dij-
4ζij

3ffiffiffi
π

p e-ζij
2rij2

 !
n̂j 3 rij

2
4

3
5

� rij
rij2

 !
3rMrij- Sij-

2ζijffiffiffi
π

p e-ζij
2rij2

 !

� 2n̂j 3 rij
rij4

rij-
n̂j

rij2

 !
3rMrij ð8Þ

The diagonal elements Dii are less straightforward to
define for the SWIG procedure.When the solute density F(r)
consists of point charges, as in MM calculations, these
elements have been defined so as to preserve an exact
geometric sum rule,18,19 but this sum rule is not applicable
here because so-called surface pointsmay actually lie inside
of the cavity, within a narrow switching region of the cavity
surface. In practice, we find that attempts to enforce the
aforementioned sum rule sometimes compromise the po-
sitive-definiteness of K, resulting in singularities that pro-
hibit convergence of the method. As an alternative, Tomasi
et al.1 have shown how to define Dii in terms of Sii, which
avoids this issue. The simplest approach, however, is to note
that

lim
rij f 0

Dij ¼ 0 ð9Þ

which follows from eq 7 and implies that Dii f 0 as ai f 0.
For a sufficiently dense discretization grid, one is therefore
justified in taking Dii � 0, and we have made this choice for
all of the calculations reported here. Numerical tests de-
monstrate that the results are virtually identical to those
obtained when Dii is defined in terms of Sii.

Application of the SWIG procedure to ASC PCMs results in
potential energy surfaces that are rigorously smooth, in the
mathematical sense of possessing continuous gradients. (See
the Supporting Information for a proof.) Physically unreason-
able fluctuations could still exist, however, as smoothness in
the colloquial sense (“chemical smoothness”20) is a much
more demanding criterion. This will be examined in the
numerical calculations that follow.

Table 1. Definitions of the Matrices Appearing in Eq 1 for the Two
PCMs Considered Here, Using the Notation Defined in Ref 7

method matrix K matrix R

COSMO/C-PCM S - ε-1
ε

� �
I

SS(V)PE S - ε-1
εþ1

� �
1
4π

� �
(DAS þ SAD†) - ε-1

εþ1

� �
I- 1

2πDA
� �
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We have implemented the SWIG-COSMO and SWIG-
SS(V)PE models within a locally modified version of the Q-
Chem electronic structure program,21 which we have further
modified to perform stand-alone MM and mixed quantum
mechanics/molecular mechanics (QM/MM) calculations. We
have developed an efficient biconjugate gradient solver for
eq 1 and an efficient implementation of the analytic energy
gradient, which is especially important for MM and QM/MM
applications, where the number of surface grid points may be
quite large. The details of our implementationwill be reported
in a future publication, but all analytic gradients have been
validated against finite-difference results. We discretize the
solute cavity surface using atom-centered Lebedev grids, with
Gaussian parameters ζi taken fromref 12 and standard values
for the atomic radii. (Details are provided in the Supporting
Information.) We set ε = 78.39 (water) for all calculations.

For comparison to the SWIG model introduced here, we
have also implemented the “fixed-point, variable area”
(FIXPVA) algorithm, another smooth version of COSMO
introduced recently by Su and Li.15 (We have generalized
FIXPVA, in a straightforwardway, for usewith anyPCMhaving
the form of eq 1.) The FIXPVA approach uses a point-charge
discretization of σ(s) and an alternative switching function to
to attenuate the areas, ai, of the surface elements. As a
baseline, we compare both SWIG and FIXPVA to the “variable
tesserae number” (VTN) method of Li and Jensen,22 a very
simple implementation of ASC PCMs. The VTN approach
ameliorates some of the problems associated with disconti-
nuities in the potential surface,22 although it does not com-
pletely eliminate these discontinuities.

For an accurate description of solvation using PCMs, it is
often necessary to retain some explicit solvent molecules,
e.g., in the first solvation shell. With this in mind, our first
illustrative application is an MM geometry optimization of
(adenine)(H2O)52, using the AMBER99 force field23 for ade-
nine and the52explicitwatermolecules, andCOSMO forbulk
water. Figure 1 plots the energy as a function of optimization
step for the VTN, FIXPVA, and SWIG implementations of
COSMO. Not surprisingly, the VTN method suffers from
numerous Coulomb singularities and discontinuities, but the
optimization does eventually converge. However, the opti-
mized structure itself exhibits a Coulomb singularity owing to
the presence of two nearby surface grid points. This results in
a pair of surface charges whose magnitude dwarfs that of all
the others, as evident from the surface charge density de-
picted in Figure 1. The two point charges in question aremore
than twice as large as any of the charges in the FIXPVA or
SWIG calculations, and likely distort the VTN solvation energy
and gradient.

The FIXPVA-COSMO optimization also converges to a
minimum, albeit in a somewhat larger number of steps, but
there are two problems. First, the cavity surface at the
optimized geometry actually exhibits holes (clearly evident
in Figure 1), wherein all of the surface element areas have
been scaled to zero. The second problem with the FIXPVA
optimization is that the energy curve, like that obtained for
VTN-COSMO, exhibits numerous sharp spikes. Unlike VTN,
these spikes cannot result from discontinuities, since the
FIXPVA potential surface is rigorously smooth. Rather, they

indicate that the energy changes incredibly rapidly in certain
regions of the FIXPVA potential surface, and consequently, an
optimization step selected using local gradient information
occasionally moves the system to a much higher-energy
geometry. Corroborating this explanation is the fact that the
energyspikesdisappear ifwedecrease themaximumallowed
step size by a factor of 10, although in this case the optimiza-
tion fails to converge within 5000 steps. This is our first
example of physically unrealistic fluctuations in a mathema-
tically smooth potential surface; subsequent examples will
suggest that the FIXPVA gradient exhibits rapid fluctuations as
a result of instabilities attributable to the use of surface point
charges. The SWIG-COSMOoptimization, in contrast, exhibits
monotonic convergence.

Figure 2 shows harmonic vibrational spectra, computed
via finite difference of analytic energy gradients, for the
FIXPVA- and SWIG-COSMO geometries of (adenine)(H2O)52
that were optimized above. (The corresponding VTN calcula-
tion resulted in several imaginary frequencies and is not
shown. To obtain strictly real frequencies with FIXPVA, it
was necessary to reduce Q-Chem's default finite-difference
step size by a factor of 10.) The FIXPVA and SWIG approaches
are in good agreement for themajority of the peaks; however,
FIXPVA predicts several peaks with impossibly large frequen-
cies, ranging from ∼5000 to 16000 cm-1. Each of these
spurious peaks is associated with vibration of a water mole-
cule near the cavity surface, where close approach of surface
charges leads to rapid variation in the gradient.

As an electronic structure example, we next consider the
dissociation reaction NaCl f Naþ þ Cl- (a standard test
case15,17) at the unrestricted Hartree-Fock (UHF)/6-31þG*/
SS(V)PE level. Potential energy curves and gradients are
shown in Figure 3 for the VTN, FIXPVA, and SWIG dis-
cretization procedures. Discontinuities in the VTN energy
and gradient are clearly evident, even near the equilibrium
geometry. The FIXPVA energy and gradient are continuous,
but the latter exhibits sizable oscillations that manifest as

Figure 1. MM geometry optimization of (adenine)(H2O)52 in bulk
water, using three different implementations of COSMO. The
vertical scale represents the cluster binding energy, including
the electrostatic free energy of solvation. Also shown are the
solute cavity surfaces for the optimized structures. Each grid point
ri is depicted as a sphere whose radius is proportional to ai, and
colored according to the charge qi.
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several very shallowminima at highly stretched bond lengths.
In this particular example, there are no sign changes in the
second derivative near the equilibrium geometry, and, con-
sequently, FIXPVA affords a reasonable vibrational frequency.
However, the large number of inflection points observed at
larger bond lengths, as the atomic spheres begin to separate,
suggests that, in larger systems where numerous atomic
spheres overlap, spurious inflection points are likely the origin
of anomalous vibrational frequencies observed, e.g., for
(adenine)(H2O)52.

The SWIG-SS(V)PE gradient exhibits onlymild oscillations,
and the corresponding potential surface exhibits only a single
minimum, at least for the switching function Fi in eq 2.
However, substitution of Fi

p in place of Fi, and using the value
p = 0.25 suggested by York and co-workers,17 introduces
oscillations in the gradient that are even more rapid than
those observed for FIXPVA (see Figure 3c). Interestingly, if one
uses the incorrect gradient expressions16 provided in ref 17,
one obtains a much less oscillatory gradient for the p= 0.25
case, although the p=1 case changes little. In our experience,
values of p 6¼ 1 only serve to introduce unwanted oscillations
in the gradient.

In addition to solute/continuum electrostatic interactions,
the NaCl potential curves in Figure 3 also include some
standard nonelectrostatic terms representing cavitation3 and
dispersion/repulsion24 interactions.Within thePCMformalism,
eachof these interactions is a function of the surface area of the
cavity. For the SWIG model, the total cavity surface area is

X
i

ai ¼
Xatoms

J

RJ
2
X
i∈J

wiFi ð10Þ

where wi are the Lebedev weights, and RJ are the radii of the
atomic spheres.

Figure 4 depicts the nonelectrostatic energy as a function
of Na-Cl distance, for the UHF/SS(V)PE calculation discussed

above. The step-like behavior of the VTN energy is a conse-
quence of abrupt changes in the number of surface elements,
which introduce step-like discontinuities in the cavity surface
area. (TheVTN schemeemploys surface tesserae having fixed
areas,which appear abruptly as their centers emerge from the
cavity interior.) That the discontinuities persist even at very
large separations is a consequence of using a larger, “solvent-
accessible” cavity surface to compute the dispersion and
repulsion energies.24

The FIXPVA method scales all areas ai by a switching
function, and consequently, the FIXPVA surface area is
bounded fromaboveby theVTN surface area. As such, atomic
radii and switching parameters developed for the electrostatic
interactions will probably underestimate nonelectrostatic
contributions, necessitating separate sets of switching para-
meters for the electrostatic, cavitation, and dispersion/repul-
sion energies.25 Reparameterization, however, will not
eliminate the rather large oscillations in the FIXPVA surface
area as a function of Na-Cl distance. The SWIG approach, in

Figure 2. Vibrational spectra of the FIXPVA-and SWIG-COSMO
optimized (adenine)(H2O)52 structures. (The inset is an enlarged
view of the region up to 4000 cm-1.) Harmonic frequencies were
calculated by finite difference of analytic energy gradients and
convolved with 10 cm-1 gaussians, weighted by the computed
intensities. Arrows indicate FIXPVA peaks with no obvious SWIG
analogues.

Figure 3. Total energy (solid curves, scale at left) and Na-atom
gradient (dashed curves, scale at right) for NaCl dissociation,
computed at the UHF/6-31þG*/SS(V)PE level including nonelec-
trostatic contributions to the PCM energy. A horizontal line in-
dicateswhere the gradient is zero. Panel c shows two sets of results
for the SWIG model, corresponding to a switching functions Fi

p

with two different values of p.
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contrast, affords a nearly monotonic increase in surface area
as a function of distance, and essentially interpolates between
the discontinuous steps present in the VTN calculation. Given
that the number of significant grid points, and hence the
dimension of K, changes numerous times as the atoms are
pulled apart (see the Supporting Information for a plot), this is
an impressive demonstration that the SWIG procedure pro-
vides “chemically smooth” potential surfaces.20

The poor behavior of the VTN approach in each of these
applications illustrates the importance of a switching function
in ASC PCM calculations, while problems encountered with
the FIXPVAmethod indicate that the details of the attenuation
procedure are important. Both the FIXPVAandSWIGmethods
guarantee continuous potential surfaces and gradients, but
the latter offers distinct advantages. Because FIXPVAemploys
point charges to discretize the surface charge densityσ(s), this
method must rapidly scale ai f 0 within the buffer region, in
order to avoid Coulomb singularities (which, in the end, are
not always avoided). This rapid scaling leads to unwanted
oscillations in the solute potential energy surface and a poor
representation of the cavity surface. Tremendous errors in
vibrational frequencies may result when calculated by finite
difference methods, despite the fact that the gradients are
smooth.

The SWIG method uses spherical gaussians centered at
Lebedev grid points to represent σ(s), thus the surface Cou-
lomb interactions are free of singularities, even as the surface
grid points pass through the switching region in close proxi-
mity to one another. As such, the switching function can act
more slowly, eliminating unphysical fluctuations in the energy
gradient. In principle, the alternative switching function em-
ployed in the FIXPVA method could be combined with
Gaussian surface charges, which might alleviate some of the
problemswith FIXPVA, althoughwehave not pursued suchan
approach.

In summary, we have introduced a Switching/Gaussian
(“SWIG”) discretization procedure for ASC PCMs, based upon
a reformulation and generalization of the S-COSMO method
of York and Karplus,12 which we have extended to sophisti-
cated PCMs including Chipman's SS(V)PEmodel.2 Discretiza-
tion of the cavity surface is accomplished using Lebedev grids,

rather than more elaborate surface tessellation schemes,5

which avoids theneed to implement complicated geometrical
derivatives of the tesserae areas.26 As such, the method is
easy to implementwithin existing codes. SWIG-PCMpotential
surfaces and gradients are rigorously smooth, in the mathe-
matical sense, and moreover appear to be free of unphysical
fluctuations. As such, vibrational frequencies can safely be
calculated by finite difference of analytic gradients. Cavity
surface areas, and therefore surface-area-dependent none-
lectrostatic interactions, vary smoothly as a function of solute
geometry, without spurious oscillations. In future work, we
will report efficient implementations of the SWIG-COSMO
and SWIG-SS(V)PE analytic gradients, along with further tests
of these methods.

SUPPORTING INFORMATION AVAILABLE Computational
details regarding cavity construction and switching functions, and a
rigorous derivation of the SWIG method. This material is available
free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author:
*To whom correspondence should be addressed. E-mail: herbert@
chemistry.ohio-state.edu.

ACKNOWLEDGMENT This work was supported by an NSF
CAREER award (CHE-0748448).

REFERENCES

(1) Tomasi, J.; Mennucci, B.; Cammi, R. Quantum Mechanical
Continuum Solvation Models. Chem. Rev. 2005, 105, 2999–
3093.

(2) Chipman, D. M. Reaction Field Treatment of Charge Penetra-
tion. J. Chem. Phys. 2000, 112, 5558–5565.

(3) Cossi, M.; Barone, V.; Cammi, R.; Tomasi, J. Ab Initio Study of
SolvatedMolecules: ANew Implementation of the Polarizable
Continuum Model. Chem. Phys. Lett. 1996, 255, 327–335.

(4) Barone, V.; Cossi, M.; Tomasi, J. A New Definition of Cavities
for the Computation of Solvation Free Energies by the
Polarizable Continuum Model. J. Chem. Phys. 1997, 107,
3210–3221.

(5) Pascual-Ahuir, J. L.; Silla, E.; Tu~non, I. GEPOL: An Improved
Description of Molecular Surfaces. III: A New Algorithm for
the Computation of a Solvent-Excluding Surface. J. Comput.
Chem. 1994, 15, 1127–1138.

(6) Foresman, J. B.; Keith, T. A.; Wiberg, K. B.; Snoonian, J.;
Frisch, M. J. Solvent Effects. 5. Influence of Cavity Shape,
Truncation of Electrostatics, and Electron Correlation on Ab
Initio Reaction Field Calculations. J. Phys. Chem. 1996, 100,
16098–16104.

(7) Chipman, D. M.; Dupuis, M. Implementation of Solvent
Reaction Fields for Electronic Structure. Theor. Chem. Acc.
2002, 107, 90–102.

(8) Chipman, D. M. Comparison of Solvent Reaction Field Re-
presentations. Theor. Chem. Acc. 2002, 107, 80–89.

(9) Klamt, A.; Sch€u€urmann, G. COSMO: A New Approach to
Dielectric Screening in Solvents with Explicit Expressions
for the Screening Energy and Its Gradient. J. Chem. Soc.,
Perkin Trans. 2 1993, 799–805.

Figure 4. Nonelectrostatic contributions to the PCM energy, for
the UHF/SS(V)PE NaCl potential curves from Figure 3.



r 2009 American Chemical Society 561 DOI: 10.1021/jz900282c |J. Phys. Chem. Lett. 2010, 1, 556–561

pubs.acs.org/JPCL

(10) Barone, V.; Cossi, M. Quantum Calculation of Molecular
Energies and Energy Gradients in Solution by a Conductor
Solvent Model. J. Phys. Chem. A 1998, 102, 1995–2001.

(11) Canc�es, E.; Mennucci, B.; Tomasi, J. A New Integral Equation
Formalism for the Polarizable Continuum Model: Theoretical
Background and Applications to Isotropic and Anisotropic
Dielectrics. J. Chem. Phys. 1997, 107, 3032–3041.

(12) York, D. M.; Karplus, M. Smooth Solvation Potential Based on
the Conductor-Like Screening Model. J. Phys. Chem. A 1999,
103, 11060–11079.

(13) Senn, H. M.; Margl, P. M.; Schmid, R.; Ziegler, T.; Bl€ochl, P. E.
Ab Initio Molecular Dynamics with a Continuum Solvation
Model. J. Chem. Phys. 2003, 118, 1089–1100.

(14) Pomelli, C. S. A Tessellationless Integration Grid for the
Polarizable Continuum Model Reaction Field. J. Comput.
Chem. 2004, 25, 1532–1541.

(15) Su, P.; Li, H. Continuous and Smooth Potential Energy Surface
for Conductor-Like Screening Solvation Model Using Fixed
Points with Variable Areas. J. Chem. Phys. 2009, 130, 074109.

(16) The factor of 1/f(̂riK) in eq 5 is absent in the formulas
appearing in refs 12 and 17. Professor D.M. York, in a private
communication, assures us that the errors are typographical,
and that the calculations reported in these papers used
correct gradients.

(17) Khandogin, J.; Gregersen, B. A.; Thiel, W.; York, D. M. Smooth
Solvation Method for d-Orbital Semiemprical Calculations of
Biological Reactions. 1. Implementation. J. Phys. Chem. B
2005, 109, 9799–9809.

(18) Rashin, A. A.; Namboodiri, K. A Simple Method for the
Calculation of Hydration Enthalpies of Polar Molecules with
Arbitrary Shapes. J. Phys. Chem. 1987, 91, 6003–6012.

(19) Pursima, E. O.; Nilar, S. H. A Simple Yet Accurate Boundary
Element Method for Continuum Dielectric Calculations.
J. Comput. Chem. 1995, 16, 681–689.

(20) Subotnik, J. E.; Sodt, A.; Head-Gordon, M. The Limits of Local
Correlation Theory: Electronic Delocalization and Chemi-
cally Smooth Potential Energy Surfaces. J. Chem. Phys.
2008, 128, 034103.

(21) Shao, Y.; Fusti-Molnar, L.; Jung, Y.; Kussmann, J.; Ochsenfeld,
C.; Brown, S. T.; Gilbert, A. T. B.; Slipchenko, L. V.; Levchenko,
S. V.; O'Neill, D. P.; DiStasio, R. A., Jr.; Lochan, R. C.; Wang, T.;
Beran, G. J. O.; Besley, N. A.; Herbert, J. M.; Lin, C. Y.; Van
Voorhis, T.; Chien, S. H.; Sodt, A.; Steele, R. P.; Rassolov, V. A.;
Maslen, P. E.; Korambath, P. P.; Adamson, R. D.; Austin, B.;
Baker, J.; Byrd, E. F. C.; Dachsel, H.; Doerksen, R. J.; Dreuw, A.;
Dunietz, B. D.; Dutoi, A. D.; Furlani, T. R.; Gwaltney, S. R.;
Heyden, A.; Hirata, S.; Hsu, C.-P.; Kedziora, G.; Khalliulin,
R. Z.; Klunzinger, P.; Lee, A. M.; Lee, M. S.; Liang, W.; Lotan, I.;
Nair, N.; Peters, B.; Proynov, E. I.; Pieniazek, P. A.; Rhee, Y. M.;
Ritchie, J.; Rosta, E.; Sherrill, C. D.; Simmonett, A. C.;
Subotnik, J. E.; Woodcock III, H. L.; Zhang, W.; Bell, A. T.;
Chakraborty, A. K.; Chipman, D. M.; Keil, F. J.; Warshel, A.;
Hehre, W. J.; Schaefer III, H. F.; Kong, J.; Krylov, A. I.; Gill,
P. M. W.; Head-Gordon, M. Advances in Methods and
Algorithms in a Modern Quantum Chemistry Program Pack-
age. Phys. Chem. Chem. Phys. 2006, 8, 3172–3191.

(22) Li, H.; Jensen, J. Improving the Efficiency andConvergence of
Geometry Optimization with the Polarizable Continuum
Model: New Energy Gradients and Molecular Surface Tessel-
lation. J. Comput. Chem. 2004, 25, 1449–1462.

(23) Wang, J.; Cieplak, P.; Kollman, P. A. How Well Does a
Restrained Electrostatic Potential (RESP) Model Perform in
Calculating Conformational Energies of Organic and Biologi-
cal Molecules? J. Comput. Chem. 2000, 21, 1049-1074.

(24) Floris, F.M.; Tomasi, J.; Ahuir, J. L. P. Dispersion andRepulsion
Contributions to the Solvation Energy: Refinements to a
Simple Computational Model in the Continuum Approxima-
tion. J. Comput. Chem. 1991, 12, 784–791.

(25) Wang, Y.; Li, H. Smooth Potential Energy Surface for Cavita-
tion, Dispersion, and Repulsion Free Energies in Polarizable
Continuum Model. J. Chem. Phys. 2009, 131, 206101.

(26) Cossi, M.; Mennucci, B.; Cammi, R. Analytical First Deriva-
tives of Molecular Surfaces with Respect to Nuclear Coordi-
nates. J. Comput. Chem. 1996, 17, 57–73.


