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ABSTRACT: We investigate the generalized Born (GB) implicit solvation model in comparison with polarizable continuum
models (PCMs). We show that the GB model is intimately connected to the conductor-like PCM (C-PCM), a method that is
accurate for high-dielectric solvents but less so for weakly polar and nonpolar solvents. The formal connection between C-PCM
and the GB model suggests that C-PCM calculations place a limit on the accuracy that one should expect from GB models but
also demonstrates that comparison of GB and C-PCM calculations directly interrogates the accuracy of the effective Coulomb
operator that is used in the pairwise GB energy expression. We introduce a simple alternative to the “canonical” pairwise
interaction operator first proposed by Still et al. and show that this alternative reduces the cost of the pairwise GB energy
summation by as much as a factor of 3. At the same time, the new operator reduces statistical errors in solvation energies (as
compared to C-PCM benchmarks) by 0.3% with respect to the canonical operator that exhibits an error of roughly 1.0%.

I. INTRODUCTION
Solvent effects are crucial in biochemical simulations,1−4 but
explicitly accounting for the multitude of solvent molecules
surrounding a solute can often make a simulation too expensive
to carry out. To avoid the unfeasible, various “implicit” solvent
methods have been developed in an effort to capture the most
important solvent effects without introducing explicit solvent
molecules. The mean-field electrostatic solvation effect, which
is the focus of the present work, is commonly modeled using a
linear, isotropic dielectric continuum solvent governed by the
Poisson equation (PE). For a solute whose charge distribution
is ρ(r)⃗, this equation is

ε πρ∇̂ ⃗ ⃗ = − ⃗r U r r[ ( ) ( )] 4 ( )
2

(1.1)

where U(r)⃗ is the total electrostatic potential and ε(r)⃗ is the
position-dependent dielectric function. The merits of (and
problems associated with) various numerical PE solvers have
been discussed at length,3−14 but this is not the focus of the
present work. Instead, we focus on a class of boundary-element
methods known as “apparent surface charge” polarizable
continuum models (PCMs).15 As compared to direct solution
of eq 1.1, these models offer a more efficient means to compute
the electrostatic solvation energy, approximately but often with
high accuracy.
For macromolecular simulations, implicit solvation using an

accurate, grid-based PE solver might yet be too computationally
expensive, and an even less expensivebut possibly less
accuratemethod becomes necessary. Generalized Born (GB)
models offer precisely this.7,12,16−18 Such models approximate
the electrostatic solvation energy arising from a set of point
charges (the solute) in a pairwise-additive way using a modified
Coulomb interaction. This approach is far less expensive as
compared to sophisticated PE solvers yet in many cases exhibits
reasonable accuracy.19 Consequently, GB models are quite
popular in molecular mechanics (MM) applications to
biomolecules.

The continuing development of GB theory has been
primarily aimed at closing the gap in accuracy between GB
models and PE solvers. Disagreement in energy between the
two is most often attributed to the effective Born radii used in
the GB calculations. To isolate errors attributable to the
pairwise-additive electrostatic interaction term, one may
compute “perfect” effective Born radii,20 as discussed in section
II of this work. The perfect radius for a given atom is defined to
be the radius such that the Born ion formula,21 using the
perfect radius, affords the exact electrostatic solvation energy
for a system in which only that particular atom’s charge is
present but where the solute cavity is maintained as if all solute
atoms were present. When perfect radii are used, any error in
the GB solvation energy is attributable solely to the choice of
the effective Coulomb operator that is used in the pairwise-
additive energy formula. Several methods exist by means of
which nearly perfect radii can be computed at fairly low
cost.22−28

Further improvements to GB theory may be possible by
considering the effective Coulomb operator. The operator
introduced by Still et al.16 more than 20 years ago remains the
most widely used choice; other effective Coulomb operators
have been proposed since that time,20,24,29−32 but none has
become widely adopted, and these alternative operators are
typically unavailable in common MM software packages. This
may be due to the fact that these alternatives tend to be more
complicated than the “canonical” (Still et al.) operator and
therefore increase the computational expense of GB
calculations. For example, Onufriev and Sigalov32 recently
presented a very thorough analysis of effective Coulomb
operators and also proposed a new one that improves upon the
canonical choice, but this improvement comes at the price of a
significant increase in computational complexity (e.g., depend-
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ence on the gradients of the effective Born radii). The Still
operator will likely continue to be the preferred choice unless
an alternative can be found that is more accurate but not
substantially more expensive.
In this work, we examine GB models in the context of a

comparison to PCMs. We show that for the conventional GB
model both the perfect effective Born radii and the effective
Coulomb operator must depend on the dielectric constant in
order to reproduce the exact electrostatic solvation energy. In
the conductor limit, however, the dielectric-dependent terms
vanish and an equivalence between GB theory and the
conductor-like PCM (C-PCM,33 also known as GCOS-
MO34,35) can be established rigorously. If one assumes, as in
conventional GB theory, that the radii and effective Coulomb
operator are independent of the solvent dielectric constant then
this equivalence implies that the accuracy of GB models is
limited by the accuracy of C-PCM calculations. This
equivalence provides the means for an incisive investigation
of the accuracy of various effective Coulomb operators in GB
theory. We exploit this to test the accuracy of some novel
pairwise interaction operators that are less expensive to evaluate
as compared to Still’s prescription; remarkably, we are able to
find an operator that is both more accurate and less expensive
than the canonical choice.
Our presentation is organized as follows. We briefly review

the theory of GB models (section II) and then draw
comparisons to PCM theory (section III). In particular, the
equivalence between GB theory and C-PCM is derived in
section III.E. We next consider effective Coulomb operators in
the GB model (section IV) and propose a new one that is less
expensive to evaluate. Finally, we present a series of calculations
on 16 small proteins and 54 larger biomolecules in order to
compare the accuracy of various effective Coulomb operators
against C-PCM results (section V). Atomic units are used in
the equations (so there is no 4πε0 in the Coulomb potential),
but numerical results are presented in kcal/mol.

II. GENERALIZED BORN MODELS

II.A. Conventional GB Model. In the GB model and other
implicit solvent models, the mean-field electrostatics of a bulk
solvent are approximated as a homogeneous dielectric medium
with a characteristic dielectric constant, ε. The solute resides in
a cavity carved out of the dielectric medium. For simplicity, we
assume throughout this work that ε = 1 inside of the cavity,
which is appropriate since electrostatic interactions are treated
explicitly within the cavity via the MM force field. The electric
field due to the solute charge distribution polarizes the medium,
and in response, the dielectric produces an electrostatic reaction
field that interacts with the solute.36 The total electrostatic
energy of this system can be written as

= +G G Gtot 0 pol (2.1)

where G0 is the gas-phase electrostatic energy of the solute
charge density, ρ(r)⃗, and Gpol is the polarization energy arising
from interaction with the solvent reaction field. In the
conventional GB model, the solute charge distribution is
modeled with a set of atom-centered point charges, qi, and the
polarization energy is expressed as

∑ε
ε

= −⎜ ⎟
⎛
⎝

⎞
⎠G

q q

f
1
2

1

i j

i j

ij
pol
GB

, (2.2)

The quantity f ij
−1 is the effective Coulomb operator. This

operator typically depends upon atom-specific information such
as effective Born radii and the distance rij between the atoms.
(A more detailed discussion of effective Coulomb operators is
given in section IV.)
For future reference, we define pairwise contributions to the

electrostatic solvation energy (cf. eq 2.2)

ε
ε

= −⎜ ⎟
⎛
⎝

⎞
⎠G

q q

f
1
2

1
ij

i j

ij
pol,

(2.3)

If i = j or in the limit that rij → 0, one demands that f ij reduce to
the effective Born radius of the ith atom, Ri. This implies that
the self-interaction terms (i = j in eq 2.2) reduce to the Born
ion expression21

ε
ε

= −⎜ ⎟
⎛
⎝

⎞
⎠G

q

R
1
2

1
ii

i

i
pol,

2

(2.4)

The effective radius Ri can be loosely interpreted as an average
measure of the distance from the ith atomic center to the cavity
surface where a strong reaction field potential is produced. The
“perfect” value of Ri is obtained by solving the PE for a system
in which qi is the only charge present, yet the solute cavity is the
same as if all atoms were present.20 The polarization energy
thus obtained, Gpol,ii

PE , can then be substituted for Gpol,ii in eq 2.4
to obtain an expression for the “perfect” value of Ri,

ε
ε

= −⎜ ⎟
⎛
⎝

⎞
⎠R

q

G
1
2

1
i

i

ii

2

pol,
PE

(2.5)

Computing perfect radii in this manner is absurd in practical
applications, since it involves numerous expensive PE
calculations that GB methods seek to avoid in the first place.
Instead, various procedures designed to approximate the perfect
Ri have been developed, including surface integral techni-
ques,25,37,38 volumetric integration methods,22,23,26,27 and
highly parametrized empirical formulas.39

Given these definitions, eq 2.2 can be rewritten as

∑ ∑ε
ε

= − +
>

⎜ ⎟
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(2.6)

The first term in this equation is a sum of atomic self-energies,
while the second term is a pairwise-additive approximation to
the interatomic Coulomb energy.

II.B. GBε Model. The “GBε model”,30 also known as the
analytical linearized Poisson−Boltzmann (ALPB) model,31 is a
relatively elaborate GB model that employs a pairwise
interaction energy of the form

∑ε
ε α ε

α
ε

= −
+

+ε
ε

⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟G

q q

f A
1
2

1
1 /

1

i j

i j

ij
pol
GB

, (2.7)

Here, α is a special nonadjustable parameter that depends upon
both ε and the solute cavity and supposedly can be derived
from theory, although doing so is not straightforward without a
priori knowledge of the exact solution to the PE for the given
solute cavity. However, this parameter is found to be rather
insensitive to variations in both cavity shape and ε, and the
value α = 0.579 has been suggested for general use.30,40 The
parameter A in eq 2.7 is the electrostatic size of the solute, which
provides a rough measure of cavity size. For a spherical cavity, A
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is equal to the cavity radius but more elaborate formulas have
been proposed for obtaining A in general.30,31 Equation 2.7
reduces to the familiar Born ion model for a single charge
centered in a spherical cavity. Note also that this equation
contains an effective Coulomb operator, 1/f ij

ε, and this is where
the effective Born radii enter into the GBε model. We will show
in section III.C how the functions f ij and f ij

ε are related.
The difference between the conventional GB model (eq 2.2)

and the GBε model (eq 2.7) is the presence of the additional
factors and terms in the latter that involve α, A, and ε. In the
limit α/ε → 0, the GBε model becomes equivalent to the
conventional GB model. Using the recommended value α =
0.579 for room-temperature water (ε ≈ 80), one has α/ε ≈
0.0072, meaning that the ε-dependent terms are quite small.
Our numerical calculations (section V) focus exclusively on
water; hence, we expect little difference between the GB and
the GBε models. For low-dielectric solvents, discrepancies
between GB and GBε calculations may be more pronounced,
just as discrepancies between C-PCM and exact PCM
calculations are large when ε is small but disappear as ε→∞.41

III. COMPARISON TO POLARIZABLE CONTINUUM
MODELS

III.A. Background. Polarizable continuum models (PCMs)
are a family of implicit solvent methods that utilize an apparent
surface charge formalism to determine the electrostatic solvation
energy (either exactly or approximately, depending upon which
PCM is used) via a boundary-element approach.15,42 This
formalism only requires the evaluation of two-dimensional
integrals over the solute cavity surface, rather than three-
dimensional volumetric integration, and is therefore signifi-
cantly less expensive as compared to grid-based PE solvers.
PCMs assume a sharp boundary at the cavity surface separating
the cavity interior from the continuum exterior, as in the Born
ion model that forms the basis of GB models. PCMs are
applicable to any solute charge density, whereas the GB and
GBε models are defined only for point charges, meaning that
more complicated charge densities must first be collapsed onto
point charges in order to use GB models.43 Because ρ(r)⃗ can be
arbitrary, PCMs are very popular for quantum-mechanical
electronic structure calculations in which the solvent reaction
field is iterated to self-consistency with the electron density.
Oddly, PCMs have not enjoyed much attention in the MM
simulation community, which has largely favored three-
dimensional PE solvers for assessing the accuracy of GB
models.
The most sophisticated and accurate PCMs are known as the

integral equation formalism (IEF-PCM)47 and also the surface
and simulation of volume polarization for electrostatics [SS(V)PE]
model.48 At the level of analytical integral equations, IEF-PCM
and SS(V)PE are equivalent, but the two methods differ in
discretization and implementation details, which can have a
profound effect on the computed solvation energy.41 If ρ(r)⃗ is
contained entirely within the solute cavity, as is the case for
classical solutes comprised of atomic partial charges, then the
solvation energy obtained using either IEF-PCM or SS(V)PE is
exactly the same as what would be obtained by solving the PE,
for any cavity shape. If some portion of the solute charge
density exists outside the cavity (e.g., the tail of an electron
density) then these methods are exact for the interior charge
density and provide an approximation for the volume
polarization that results from the exterior charge density.48

This approximation has been shown to be quite accurate.42

IEF-PCM and SS(V)PE calculations, while less expensive
than three-dimensional PE solvers, remain fairly expensive for
macromolecular solutes. A computationally simpler alternative
is the conductor-like screening model (COSMO).49 In this work,
we focus on a slightly modified version of the original COSMO
that is known variously as either “generalized COSMO”
(GCOSMO) or the conductor-like PCM (C-PCM),33−35

which is better justified on formal theoretical grounds,41

although the numerical differences are small in high-dielectric
solvents. (Explicit equations for these models are given in
Appendix A.)
Unlike the IEF-PCM and SS(V)PE approaches, C-PCM

calculations provide only an approximate electrostatic solvation
energy, even for solutes composed of classical point charges.
However, the accuracy of this approximation improves as ε
increases, such that for ε ≈ 80 (and in some cases for dielectric
constants as low as ε ≈ 10) the error is negligible as compared
to IEF-PCM/SS(V)PE.41 In the conductor limit (ε → ∞), all
of these PCMs are equivalent and provide the exact
electrostatic solvation energy for a given cavity shape, provided
that ρ(r)⃗ is contained entirely within the cavity.
Previous comparisons of PCM and GB results have been

mostly superficial, either comparing the computed total
solvation energies5,25,50−53 or in some cases simply stating
that a solvent reaction field is obtainable with either a PCM or a
GB model.5,15,54 Such comparisons overlook how these
methods are related at a more fundamental level. We seek to
highlight this relationship. In what follows we derive analytical
equations that place PCMs and GB models on a common
theoretical footing that facilitates comparison of these models.

III.B. Polarization Energy. In PCM theory, the polarization
of the dielectric medium is represented by an “apparent” (i.e.,
effective) surface charge density that resides on the surface of
the solute cavity.15 A point on the cavity surface will be denoted
by s,⃗ whereas an arbitrary point in space will be denoted r.⃗ The
surface charge, σ(s)⃗, produces a reaction-field potential, χ(r)⃗,
that interacts with the solute charge density, ρ(r)⃗. The total
electrostatic solvation energy for any PCM can be expressed as
(cf. eq 2.1)

= +G G Gtot
PCM

0 pol
PCM

(3.1)

The electrostatic solvation energy, Gpol
PCM, is

∫ ρ χ= ⃗ ⃗ ⃗G r r r
1
2

d ( ) ( )pol
PCM

(3.2)

or equivalently

∫ σ ϕ= ⃗ ⃗ ⃗G s s s
1
2

d ( ) ( )pol
PCM

(3.3)

where ϕ(s)⃗ is the electrostatic potential due to ρ(r)⃗, evaluated
at the cavity surface. To determine σ(s)⃗, we introduce an

integral operator ̂ (called the response operator) that maps
ϕ(s)⃗ onto σ(s)⃗:

σ ϕ⃗ = ̂ ⃗s s( ) ( ) (3.4)

Each PCM is defined by its particular form for ̂ .̂ Definitions
for ̂ ̂ and other PCM integral operators can be found in
Appendix A.
To make a useful comparison with GB models, we assume

henceforth that the solute is composed of point charges,
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∑ρ δ⃗ = ⃗ − ⃗r q r r( ) ( )
i

i i
(3.5)

We then partition ϕ(s)⃗ into the sum of contributions from each
individual point charge,

∑ϕ ϕ⃗ = ⃗s s( ) ( )
i

i
(3.6)

The mapping in eq 3.4 then partitions σ(s)⃗ according to

∑σ σ⃗ = ⃗s s( ) ( )
i

i
(3.7)

where σi = ϕ̂ i. Inserting these partitions into eq 3.3 we have

∫∑ σ ϕ= ⃗ ⃗ ⃗G s s s
1
2

d ( ) ( )
i j

i jpol
PCM

, (3.8)

We conclude that the PCM electrostatic solvation energy is
decomposable into a form analogous to eq 2.6 for GB models.
The i = j terms in eq 3.8 constitute the self-energy energy, and
the i ≠ j terms comprise the pairwise-additive energy.
III.C. Effective Coulomb Operator. Comparing eqs 2.2

and 3.8 we obtain the following analytical relationship involving
the GB effective Coulomb operator:

∫ε
ε

σ σ− = ⃗ ⃗ ̂ ⃗
−

⎜ ⎟
⎛
⎝

⎞
⎠

q q

f
s s s

1
d ( ) ( )i j

ij
i j

1

(3.9)

The right side of this equation is a complicated surface integral
and does not provide an obvious route to defining a better f ij.
Nevertheless, it is informative to substitute the IEF-PCM/
SS(V)PE version of the response operator (see Appendix A)
into eq 3.9. Upon rearranging, the result is

∫ σ σ= ⃗ ⃗ ̂ ⃗ε ε

q q

f
k s s sd ( ) ( )i j

ij
i j

2

(3.10)

where

ε
ε

=
−εk

1 (3.11)

and

ε
̂ = ̂ + ̂ − ̂ ̂
ε

−⎡
⎣⎢

⎤
⎦⎥

1
(2 )

1

(3.12)

The operators in eq 3.12 are defined in Appendix A. Note the
conductor limit, ∞̂ = S ̂ and k∞ = −1.
Defining

ϕ
ϕ

⃗ =
⃗∼ s

s

q
( )

( )
i

i

i (3.13)

we can rearrange eq 3.10 using eq 3.4 to obtain

∫ ϕ ϕ= ⃗ ̃ ⃗ ̂ ̃ ⃗ε
−

f
s s s

1
d ( ) ( )

ij
i j

1

(3.14)

This equation implies that in order to reproduce the exact
electrostatic solvation energy, the operator f ij in the conven-
tional GB model must depend on ε, since ε̂ depends explicitly
on ε. In the conductor limit, however, the ε-dependent terms
vanish:

∫ ϕ ϕ= ⃗ ̃ ⃗ ̂ ̃ ⃗∞
−

f
s s s

1
d ( ) ( )

ij
i j

1

(3.15)

This result is interesting because the canonical choice for f ij,
originally proposed by Still et al.,16 does not depend on ε (see
section IV) nor do most alternatives. Therefore, even if perfect
effective Born radii are obtained, the pairwise interactions in the
conventional GB model will be incorrect to some extent
without an ε-dependent Coulomb operator. This discrepancy
vanishes as ε → ∞, which explains how these models can still
perform reasonably well for water.
We can make an analogous comparison to the pairwise

interactions in the GBε model with the following result:

∫α ε
α
ε

ϕ ϕ
+

+ = ⃗ ̃ ⃗ ̂ ̃ ⃗ε∞
−

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟f A

s s s
1

1 /
1

d ( ) ( )
ij

i j
1

(3.16)

Here, we have explicitly written that the effective Coulomb
operator used in the GBε model, which we previously called f ij

ε,
must be evaluated in the conductor limit ( f ij

∞), which is easily
seen by taking the limit ε → ∞ to recover eq 3.15. This
important feature has been known since the original derivation
of the GBε model,30 and the GBε model does incorporate a
dependence on ε into the pairwise interactions. It seems
reasonable to expect that one could use eq 3.16 to arrive at
explicit expressions for α and/or A for nonspherical cavities, but
our attempts to do so have not yielded anything more fruitful
than what has already been suggested by other authors.

III.D. Effective Born Radii. The function f ij reduces to an
effective Born radius in the limit that rij → 0. On the basis of
the analysis in section III.C we deduce the following expression
for the perfect effective Born radius in the conventional GB
model:

∫ ϕ ϕ= ⃗ ̃ ⃗ ̂ ̃ ⃗ε
−

R
s s s

1
d ( ) ( )

i
i i

1

(3.17)

The dependence on ε vanishes only in the conductor limit, in
which case the perfect radius is given by

∫ ϕ ϕ= ⃗ ̃ ⃗ ̂ ̃ ⃗∞
−

R
s s s

1
d ( ) ( )

i
i i

1

(3.18)

Note that f ij
∞ = Ri

∞ for i = j.
III.E. Equivalence of the GB Model to C-PCM. Consider

the GB polarization energy in the conductor limit. In that limit,
both the GB and the GBε models afford

∑= −∞
∞G

q q

f
1
2 i j

i j

ij
pol
GB,

, (3.19)

To recover an expression akin to eq 2.2 one only needs to scale
by (1 − ε)/ε:

ε
ε

= − ∞⎜ ⎟
⎛
⎝

⎞
⎠G G

1
pol
GB

pol
GB,

(3.20)

Using eq 3.15 for f ij
∞ we can rewrite eq 3.20 as

∫∑ ϕ ϕ= − ⃗ ⃗ ̂ ⃗ε
− −

G k s s s
1
2

d ( ) ( )
i j

i jpol
GB 1

,

1

(3.21)

Recognizing that (see Appendix A)

̂ = − ̂
ε

− − −
k

C PCM 1 1
(3.22)
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one finds that the right side of eq 3.21 is precisely the C-PCM
polarization energy. We thus obtained the remarkable
equivalence that

= −G Gpol
GB

pol
C PCM

(3.23)

This equivalence between GB and C-PCM polarization
energies has been derived under the assumption of employing
Ri
∞ and f ij

∞, which are arguably the best possible ε-independent
choices for use in conventional GB theory, since any other ε-
independent choices would necessarily lack the correct
asymptotic limit as ε → ∞. In other words, conventional GB
theory will, at best, reproduce C-PCM results when using
perfect effective Born radii, obtained in the conductor limit,
along with an effective Coulomb operator f ij

∞ that is appropriate
for the conductor limit. Unless ε-dependent radii and an ε-
dependent effective Coulomb operator are employed, which is
atypical, the accuracy of conventional GB modelsin terms of
reproducing the exact electrostatic solvation energy obtained
from Poisson’s equationis limited by the accuracy of C-PCM.
Note that unlike the IEF-PCM/SS(V)PE method, the C-PCM
approach is not exact for finite ε, even for point-charge solutes,
except in certain special cases such as the Born ion model.
Therefore, if conventional GB results happen to be more
accurate than C-PCM, this can only result from some fortuitous
cancellation of errors or system-specific tailoring of parameters.
We stress that eq 3.23 holds only when ρ(r)⃗ consists of point

charges and not for the more complicated charge distributions
that arise in electronic structure calculations or the higher order
multipoles that are sometimes employed in polarizable force
fields. C-PCM can handle these more complicated cases
directly, whereas to apply a GB model, the electrostatic
potential would first have to be expressed in terms of
appropriate point charges. In Appendix B, we show that the
pairwise-additive approximation in GB theory can be extended
to higher order multipoles, as is done in the generalized
Kirkwood model.44,45

The equivalence expressed in eq 3.23 has a few additional
implications worth mentioning. Whereas GB models are often
regarded as empirical constructions born from dubious
approximations, eq 3.23 provides a direct connection to a
model (C-PCM) that can be derived from Poisson’s equation
using well-defined approximations.55 These approximations can
furthermore be shown to introduce errors of order ε−1;55

hence, the accuracy is often quite good in high-dielectric
solvents. Thus, the empiricism in GB calculations is restricted
to how one computes approximate values for Ri

∞ and what
functional form is chosen for f ij

∞ in practice.
Note that the equivalence in eq 3.23 is valid for arbitrary ε,

although it does require that the GB model use Born radii and
an effective Coulomb operator that are appropriate for the
conductor limit. Equation 3.23 further implies that if one uses
C-PCM calculations to obtain perfect effective Born radii then
these radii will be Ri

∞ (see eq 3.18) no matter what value of ε is
used in the C-PCM calculation. This is a useful fact because it
means that when we compare C-PCM calculations to GB
results that employ perfect radii obtained from the C-PCM
calculation any discrepancy between the two solvation energies
is directly attributable to the effective Coulomb operator,
( f ij

∞)−1. This makes comparisons to C-PCM especially useful
for developing improvements to the function f ij

∞. As compared
to three-dimensional PE solvers, we find that it is generally
easier and less expensive to converge C-PCM calculations with

respect to the quadrature grid that is used to discretize the
cavity surface,41 so the equivalence expressed in eq 3.23 is very
convenient from the standpoint of benchmarking.
We confirmed that the equivalence in eq 3.23 holds,

numerically, to better than 10−6 kcal/mol for the case of a
spherical cavity containing any number of point charges located
at arbitrary interior positions. For this special case, analytic
equations for Ri

∞ and f ij
∞ are available.24 These tests

furthermore confirm that the GBε model is extremely accurate
for all values of ε, including smaller values for which C-PCM is
significantly less accurate than IEF-PCM/SS(V)PE.

IV. EFFECTIVE COULOMB OPERATORS
IV.A. Traditional Models. Defining the effective Coulomb

operator, f ij
−1, poses a major challenge for GB theory because its

analytic expression is known only in two limiting cases, yet its
definition is crucial to the success of GB models. One of these
cases is that of two point charges located at arbitrary positions
inside of a spherical cavity surrounded by a conductor. In this
case, the effective Coulomb operator

= + ∞ ∞f r R Rij ij i j
sphere 2

(4.1)

affords the exact Gpol if Ri
∞ and Rj

∞ are both perfect effective
Born radii.24 The perfect radii can be computed from an
analytic expression in this case; see section V.B. Equation 4.1
naturally reduces to the self-energy expression when rij = 0.
Equation 4.1 was derived by Grycuk,24 but well before that

time it was recognized by Still et al.16 that f ij
sphere tends to

underestimate the longer-range interaction of two proximal
charges centered in spheres that are fully exposed to the
dielectric. In this case,

=f rij ij
long

(4.2)

is the exact Coulomb operator, provided that the two spheres
do not overlap.55,56

Equations 4.1 and 4.2 are the only exact limits for which the
effective Coulomb operator is known. For all other cases, which
constitute the overwhelming majority of interactions in
practice, simple pairwise-additive analytic expressions for f ij
are not known. Knowledge of these exact limits seems to have
been what prompted Still et al.16 to introduce an empirical
function, f ij

Still, that interpolates between them:

= + −f r R R eij ij i j
BStill 2 ij

(4.3)

Here,

=B
r

cR Rij
ij

i j

2

(4.4)

and c is an empirical parameter. The value c = 4 was proposed
by Still et al., but subsequent authors have suggested other
values including c = 1.64,29 3.7,57 5.249,27 and 8.23

The concept of the effective Coulomb operator as an
interpolation function can be expressed more generally as32

= + Ψf r R Rij ij i j ij
2

(4.5)

where Ψij is some function chosen to obtain the proper limits.
The choice Ψij

sphere ≡ 1 recovers eq 4.1, whereas Ψi
long ≡ 0

recovers eq 4.2 and Ψij
Still = exp(−Bij) yields the canonical

effective Coulomb operator.
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IV.B. Simplified Models. One school of thought for
improving the effective Coulomb operator in the GB model is
to introduce further complexity to account for the pieces that
the canonical (Still et al.) operator is missing. This is almost
certainly the correct approach if one desires to develop a GB
model whose accuracy is competitive with that of PE solvers.
However, more complexity is almost invariably tied to greater
computational expense, and for biomolecular simulations the
increased cost may not be justified if the gain in accuracy is
modest.
We take a somewhat different approach here and attempt to

enhance the computational efficiency of GB calculations while
maintaining, if not improving upon, the accuracy of the
canonical operator. Our strategy is to identify the CPU-
intensive parts of f ij

Still and replace these with less expensive
operations. After all, the effective Coulomb operator is known
only in two limits, so there is really no theoretical justification
for the CPU-intensive function calls (exponential and square-
root functions) in eqs 4.3 and 4.5. In what follows we assume
as is typically the casethat the atomic coordinates and
effective Born radii are stored and available in core memory.
Note that rij

2 can be computed from atomic coordinates without
calling the square-root function.
The square-root function in eq 4.5 can be obviated by a

clever choice of the interpolating function:

Ψ =
Ω

+ Ω
r

R R

2
ij

ij ij

i j
ij
2

(4.6)

With this choice, eq 4.5 for f ij becomes

= + Ωf r R Rij ij ij i j (4.7)

The function Ωij will be chosen below in order to satisfy two
limiting conditions:

Ω → →r R R1 as / 0ij ij i j
2

(4.8a)

Ω → → ∞r R R0 as /ij ij i j
2

(4.8b)

First, however, let us comment on computational consid-
erations. Although eq 4.7 may initially appear to complicate
matters, we can choose to store Ri

1/2 in core memory rather
than Ri, thereby eliminating calls to the square-root function.
This represents a very minor (and linear-scaling) addition to
the computational overhead that can be performed prior to the
quadratic-scaling pairwise loop. In addition, rij should be
available from other pairwise interactions, namely, the vacuum
Coulomb interaction for G0 (eq 2.1). Thus, if the pairwise GB
energy is computed inside of the vacuum Coulomb pairwise
loop, which is common practice, then evaluating eq 4.7 only
requires computing the yet-to-be-defined function Ωij.
A simple choice for Ωij that satisfies the conditions in eqs

4.8a and 4.8b and also provides good accuracy, according to
calculations discussed in section V, is

ζ
Ω =

−⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

r

R R
expij

ij

i j

exp

(4.9)

with ζ = 1.021. However, we prefer to avoid the costly
exponential function and instead make use of the following
approximation

≈
+

−
⎛
⎝⎜

⎞
⎠⎟x p

e
1

1 /
x

p

(4.10)

which is valid for p ≥ 1 and becomes exact in the limit p → ∞.
A low-order approximation to the exponential function can thus
be obtained using only a few floating-point operations. The
quantity (1 + x/p)−1 can be computed for about the same cost
as computing Bij in eq 4.4 and can then be successively self-
multiplied log2 p times to obtain the approximation in eq 4.10.
One may view the value of p as just another adjustable
parameter or merely as a part of selecting an interpolation
function, analogous to choosing exp(−Bij) in the case of the
canonical operator. We find that p = 16 is satisfactory, in terms
of both accuracy and efficiency, when accompanied with a slight
adjustment to ζ = 1.028.
In summary, we propose to use the following effective

Coulomb operator

= + Ωf r R Rij ij ij i j
p16 p16

(4.11)

with

ζ
Ω = +

−⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

r

R R
1

16ij
ij

i j

p16

16

(4.12)

and ζ = 1.028. In the numerical calculations reported in section
V, we will also test another effective Coulomb operator, f ij

exp,
which is analogous to f ij

p16 except that it uses Ωij
exp (eq 4.9), with

ζ = 1.021, rather than Ωij
p16.

We note that f ij
p16 is essentially a simpler, more efficient

version of the Still operator, and as such it does not necessarily
account for “transverse” interactions that make Ψij > 1 in some
cases.32 (A value ζ < 1 can make Ψij > 1 for f ij

p16, but we have
not found this useful in practice so far. One could imagine
choosing ζ to be some simple function that becomes less than
unity when it detects “transverse” interactions, but we have not
attempted to do this.) We do not expect f ij

p16 to rival the
accuracy achieved by a more sophisticated alternative operator
like that introduced recently by Onufriev and Sigalov.32

Nevertheless, our numerical results indicate that f ij
p16 is a

noticeable improvement upon the canonical Still operator.

V. NUMERICAL TESTS
V.A. Computational Details. C-PCM calculations were

carried out for all of the systems investigated here using a
solvent dielectric constant, ε = 78.4, that is characteristic of
room-temperature water and a dielectric constant of unity
inside of the solute cavity. The atomic spheres used to
construct the solute cavity surface are chosen in the customary
manner for PCM calculations,15 namely, by scaling atomic van
der Waals radii58 by a factor of 1.2. We then use these atomic
spheres to construct Connolly’s “solvent-excluded” cavity
surface59 using a new algorithm that fits within the framework
of the switching Gaussian (SWIG) surface discretization
method that we developed.60,61 (The technical details involved
in extending the SWIG algorithm to construction of a Connolly
surface will be reported in a future publication, but the end
result is a discretized version of the surface proposed by
Connolly.59) A solvent probe radius of 1.4 Å, corresponding to
water, is used to construct the Connolly surface. The average
grid resolution of the surface in all calculations is 0.07 Å2 per
surface element (14 grid points/Å2), and we expect
discretization errors of <1 kcal/mol in Gpol for the C-PCM
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calculations.61 Atomic point charges for the solute are taken
from the AMBER99 force field.62

Perfect effective Born radii are obtained from the C-PCM
calculations following eq 2.5, wherein a separate C-PCM
calculation is performed for each individual atom of the solute.
Because we use C-PCM, these perfect Born radii are in fact the
Ri
∞ of eq 3.18. We also use C-PCM to compute the pairwise

interactions, Gpol,ij
C‑PCM, for all atom pairs in every system. By

virtue of the equivalence between C-PCM and the conventional
GB model, this is the same as using eq 3.15. The C-PCM
matrix equations are solved via direct matrix inversion for the
16 small protein training set (section V.B) to provide highly
precise benchmark data. For the larger biomolecule set (section
V.D), matrix inversion is no longer feasible given our
computational resources and we instead employ an efficient,
low-memory conjugate gradient solver with a tight convergence
criterion. For the data set of 16 small proteins discussed in
section V.B, the difference between the conjugate gradient and
direct inversion results is −0.002 ± 0.006 kcal/mol. All
calculations are performed using a locally modified version of
the Q-CHEM software.63

V.B. Small Protein Training Set. The GB model is most
commonly used in simulations of biochemical macromolecules,
so in order to provide a relevant gauge of performance, we
investigate the accuracy and efficiency of various GB models for
a set of 16 small proteins selected from the training set used by
Feig et al.19 This data set, which is listed in Appendix C, was
downloaded from the Protein Data Bank (PDB, www.pdb.
org)64 and set up for calculation using Tinker, v. 4.2.65 The
proteins range from 515−997 atoms (37−69 residues) and
were selected mainly for being feasible in the context of the C-
PCM calculations performed here.
We first consider errors

Δ = −−G G Gpol pol
C PCM

pol
GB

(5.1)

in the total electrostatic solvation energy, obtained using perfect
effective Born radii. As discussed in section III.E, these errors
are attributable solely to the effective Coulomb operator and we
test five different operators, including f ij

sphere (eq 4.1) and also
f ij
Still (eq 4.3), the latter with both c = 4.0 (the most widely used
value of this parameter) and c = 5.5, which was optimized to
minimize the percentage root-mean-square error (RMSE) for
this particular training set. (The optimal value that we obtain is
close to the value c = 5.249 recommended by Grant et al.27)
Finally, we test the two new operators proposed in section
IV.B, namely, f ij

exp as defined by eqs 4.7 and 4.9, and f ij
p16 as

defined in eq 4.11. These two operators differ only in the
numerical implementation of the exponential function that
defines Ωij

exp, and the ζ parameters that were reported in section
IV.B have been optimized to minimize the percentage RMSE
for this training set.
A statistical summary of the errors in total solvation energies

(ΔGpol) is presented in Table 1, and in Table 2 we present a
statistical analysis of errors in Gpol,ij for all atom pairs (i,j) in the
protein training set. Perhaps not surprisingly, the operator
f ij
sphere is the least accurate among the interaction operators that
we consider. More interesting is the fact that f ij

p16 improves
upon f ij

Still for both the total polarization energy and the pairwise
polarization energies. Optimizing the value of c in f ij

Still to
minimize the RMSE in Gpol also has the effect of reducing the
mean absolute error (MAE) relative to the canonical choice c =
4.0, but this change does bias the mean signed error (MSE)
toward underestimation of the polarization energy, that is,
optimization makes Gpol

GB more negative on average. Looking at
the pairwise interactions, however, the choice c = 5.5 is clearly
superior to c = 4.0.
Most significantly, f ij

p16 reduces the RMSE and MAE of the
total polarization energy by 3.28 and 2.81 kcal/mol,
respectively, relative to f ij

Still with c = 5.5. In terms of
percentages, this is a reduction in the statistical error by
0.30% and 0.25%, respectively, an appreciable improvement

Table 1. Error Statisticsa in the Total Solvation Energy, Gpol, Using Perfect Radii and Various Forms of f ij for a Training Set of
Small Proteins

Still operatorc new operators

sphere operatorb c = 4.0 c = 5.5 expd p16e

MSEf 8.97 (1.44) 2.76 (0.10) 5.45 (0.52) 2.79 (0.22) 1.10 (0.07)
SDg 8.61 (1.72) 9.06 (1.10) 7.14 (0.65) 6.32 (0.61) 5.59 (0.52)
RMSEh 12.43 (2.24) 9.47 (1.10) 8.98 (0.83) 6.91 (0.65) 5.70 (0.53)
MAEi 10.64 (1.52) 7.75 (0.91) 6.85 (0.66) 5.09 (0.52) 4.04 (0.41)
Max. AEj 21.04 (6.69) 20.33 (2.44) 21.63 (1.70) 18.02 (1.34) 15.62 (1.16)

aErrors in kcal/mol, with % errors in parentheses. bEquation 4.1. cEquation 4.3. dEquations 4.7 and 4.9. eEquation 4.11. fMean signed error.
gStandard deviation about the MSE. hRoot-mean-square error. iMean absolute error. jMaximum absolute error.

Table 2. Error Statisticsa in the Pairwise Interaction Energies, Gpol,ij (eq 2.3), Using Perfect Radii and Various forms of f ij for a
Training Set of Small Proteins

Still operator new operators

sphere operator c = 4.0 c = 5.5 exp p16

MSE × 10−6 30.7 (−0.077) 9.4 (0.085) 18.7 (0.064) 9.5 (0.051) 3.8 (0.037)
SD 0.14 (2.73) 0.11 (2.71) 0.085 (2.16) 0.080 (1.95) 0.077 (1.77)
RMSE 0.14 (2.73) 0.11 (2.71) 0.085 (2.16) 0.080 (1.95) 0.077 (1.77)
MAE 0.045 (2.17) 0.032 (1.63) 0.025 (1.28) 0.022 (1.13) 0.021 (1.02)
max AE 6.04 (14.46) 4.66 (21.66) 4.03 (19.64) 3.85 (19.02) 3.71 (18.12)
no. of gross errorsb 9620 4991 2479 2128 2056

aErrors in kcal/mol with % errors in parentheses for 4 677 283 interaction pairs. Other nomenclature is the same as in Table 1. bNumber of errors
larger than 1.2 kcal/mol.
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given that f ij
Still with c = 5.5 has an RMSE of only 0.83% and a

MAE of only 0.66%. On an individual basis, f ij
p16 is not always

the best operator, but on a statistical basis it is definitely the
best choice for this particular data set.
We also track the number of “gross” errors in the pairwise

energies. Following Onufriev and Sigalov,32 we define a gross
error to be one for which |ΔGpol,ij| > 2kBT and set 2kBT = 1.2
kcal/mol here, corresponding to T = 300 K. From Table 2 we
see that f ij

p16 has the fewest gross errors, more than halving the
number of gross errors obtained using the canonical Still
operator with c = 4.0. It is nevertheless remarkable that of all
the 4 677 283 pairwise interactions in the data set, f ij

Still with c =
4.0 manages to place 99.9% of them within the prescribed gross
error threshold.
In addition to perfect radii, C-PCM calculations provide the

means to compute “perfect” values of Ψij. To do this we use eq
4.5 to obtain Ψij, taking f ij to be whatever value is necessary to
reproduce the value of Gpol,ij obtained from a C-PCM
calculation. The resulting “perfect” value of Ψij, which we
denote Ψij

C‑PCM, is therefore different for each atom pair and
defined only for a single value of rij. We plot these values in
Figure 1 for one particular protein in the data set; other
proteins exhibit similar trends.

The C-PCM data confirm (as has been shown previously20)
that the interpolating function Ψij is not a simple, single-valued
function of pairwise distance and/or effective Born radii. As
such, by choosing some analytic function Ψij(rij) to define a GB
model, one may hope, at best, to obtain a reasonable average
over what is essentially a structured scatter plot of Ψij

C‑PCM

values. In particular, we note that there are numerous atomic
pairs for which Ψij

C‑PCM > 1, behavior that Onufriev and
Sigalov32 attributed to “transverse” pairwise interactions. These
data points are outside the range of the various empirical
choices for Ψij that are considered here.
Note also from Figure 1 the absence of data points for which

Ψij
C‑PCM < 0. Negative values of Ψij imply an unphysical

Coulomb interaction wherein |G0,ij| < |Gpol,ij| for i ≠ j; hence,
“exact” calculations should never exhibit Ψij

C‑PCM < 0. In
practice, we find that C-PCM calculations can exhibit
unphysical values Ψij

C‑PCM < 0 unless the C-PCM linear
equations are solved to very high numerical accuracy. These
unphysical values typically correspond to larger values of rij and

therefore make little difference to the total solvation energy
(total energy differences of ∼0.002 kcal/mol, depending on
numerical thresholds), but they do paint an unrealistic picture
of the Ψij distribution. For this reason, all of the C-PCM
calculations for the protein training set (and thus all of the C-
PCM data in Figure 1) solve the C-PCM equations by matrix
inversion rather than via a conjugate gradient algorithm.
Also plotted in Figure 1 are several different choices for the

analytic interpolation function Ψij(rij) corresponding to various
analytic functions f ij. These plots reveal why GB models work
at all: the interpolating functions Ψij clearly pick up the
structure of the scatter plot of exact Ψij

C‑PCM values, in an
average way, while achieving the correct limits as rij → 0 and rij
→∞. Moreover, the differences between various choices for Ψij
help to explain the relative accuracy of the corresponding GB
models.
When the quantity rij/(RiRj)

1/2 is small, all of the analytic
interpolation functions are in rough agreement with Ψij

C‑PCM

values and each achieves the correct limit of Ψij = 1 for rij = 0.
(Note that Ψij

sphere ≡ 1.) We see that Ψij
Still with c = 4.0 is too

short ranged as compared to the Ψij
C‑PCM data, but the choice c

= 5.5 increases the extent of Ψij
Still and improves its agreement

with Ψij
C‑PCM . However, the functions Ψij

exp and Ψij
p16 are even

longer ranged, and on average, these functions provide a better
fit to the Ψij

C‑PCM data for the middle-range values of rij/
(RiRj)

1/2. This explains why these new interpolation functions
improve the energy statistics for the protein data set. The
corollary of this observation is that for systems in which the
“perfect” Ψij might be predominantly short-ranged, Ψij

Still could
be more accurate than Ψij

exp or Ψij
p16. However, our tests here on

small proteins and on the larger biomolecules in section V.D
seem to indicate that these macromolecular systems tend to
have more long-ranged pairwise interactions, again leading to
the observed improvement in accuracy when Ψij

exp or Ψij
p16 is

used in place of Ψij
Still.

V.C. R6 Effective Born Radii. In order to examine larger
macromolecules, we must abandon perfect effective Born radii
because they become too cumbersome to compute. Instead, we
turn to the integral-based methodology sometimes referred to
as “R6 radii” (for reasons that will become apparent).
Grycuk24 has shown that for the case of a spherical cavity

embedded in a conductor, the following integral yields the exact
polarization energy for a point charge located at an arbitrary
point ri⃗ inside of the sphere:

∫π
= − ⃗

| ⃗ − |⃗

⎛
⎝⎜

⎞
⎠⎟G

q r
r r2

3
4

d
ii

i

i
pol,
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2

ext 6

1/3

(5.2)

The integration region is the volume exterior to the cavity, but
this can be transformed into a surface integral using Gauss’
theorem, resulting in the following equivalent expression:

∫π
= − ⃗

⃗ − ⃗ · ⃗
| ⃗ − |⃗
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(5.3)

Here, the integral runs over the spherical cavity surface and ns⃗ ⃗ is
the outward-pointing vector normal to the cavity surface at the
point s.⃗ These integrals immediately afford the perfect effective
Born radii:

∫π
= ⃗

⃗ − ⃗ · ⃗
| ⃗ − |⃗
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Figure 1. Values of Ψij
C‑PCM for the protein 1AJJ, along with analytic

interpolation functions corresponding to the effective Coulomb
operators f ij

Still, f ij
exp, and f ij

p16 . For f ij
sphere, the corresponding

interpolation function is constant (Ψij
sphere ≡ 1) and is not plotted.
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Numerically, one can compute R6 radii via a discretized version
of eq 5.4,

∑
π

= ⃗ − ⃗ · ⃗
| ⃗ − |⃗

−⎛
⎝
⎜⎜

⎞
⎠
⎟⎟R

s r n a
s r

1
4

( )
i

k

k i k k

k i
R6, 6

1/3

(5.5)

Here, ri⃗ is the location of the ith atom and the summation runs
over all surface grid points sk⃗ with outward-pointing surface
normals n ⃗k and surface areas ak. By using eq 5.5 in our GB
calculations hereafter, we are essentially comparing C-PCM to a
version of the surface GB (S-GB) method.37

Equation 5.4 is exact for a spherical cavity in a conductor;
hence, RR6,i = Ri

∞ in this case. For nonspherical cavities, the R6
integral does not yield the exact Ri

∞, although the inverse R6
radii are found to be quite close to 1/Ri

∞ apart from a roughly
constant offset.28 As such, Mongan et al.28 propose augmenting
the R6 radii to shift them closer to perfect radii on average.
Thus, they propose to use so-called “R6* radii” defined by

*
= +

R R
a

1 1

i iR6 , R6, (5.6)

where a is an empirical constant. While acknowledging that the
optimal value of a likely depends on the choice of cavity
definition, Mongan et al.28 suggest using the value a = 0.028
Å−1.
Returning now to the testing of effective Coulomb operators,

we investigate the effect of using R6 radii computed via eq 5.5,
where the cavity surface is the same Connolly surface that is
used in the C-PCM calculations. Because the same surface
integration grid is used to compute both the R6 radii and the C-
PCM energies, we eliminate any possible error arising from
incongruities in the discretization, which might be present, for
example, if one were to compute R6 radii with a volumetric
integration grid and then compare to perfect radii derived from
a boundary-element method such as C-PCM. For the protein
training set and cavity surface definition considered here, we
find that a shift of a = 0.011 Å−1 best reproduces the perfect
radii (see Figure 2).
Energy statistics are reported in Table 3 for the small protein

training set using the R6* radii. Essentially the same trends are
observed as in the case of the perfect effective Born radii (Table
1), confirming that the augmentation in eq 5.6 is a rather robust
correction. The R6* radii seem to incur only a small but
constant error for f ij

Still (c = 5.5), f ij
exp and f ij

p16, raising the RMSE

by about 0.1% as compared to results obtained with perfect
radii.

V.D. Larger Biomolecules. Three of the five effective
Coulomb operators considered here have parameters that are
optimized to minimize errors in the protein training set
introduced above. Next, we consider a data set for which we
have not performed any parameter optimization. Specifically,
we select a second data set consisting of 54 larger biomolecules
(ranging from 758−6186 atoms) and compute ΔGpol using the
R6* radii optimized for the training set. This new data set,
which is listed in Appendix C, is composed of 41 randomly
selected proteins from a study by Feig et al.19 along with the 12
protein structures and the one B-DNA structure considered by
Onufriev and Sigalov.32 The data set includes a variety of
structures and charge distributions and serves as a blind test of
the accuracy of f ij

exp and f ij
p16.

Energy statistics are reported in Table 4, and overall the
trends are fairly similar to what was observed for the small
protein training set. The operator f ij

sphere is still the worst for
accuracy, and f ij

Still with c = 5.5 offers a small improvement over
the corresponding operator with c = 4.0. The new operators f ij

exp

and f ij
p16 are statistically better than f ij

Still with c = 5.5, offering up
to ∼0.2% reduction in the RMSE and MAE. Further tests will
be necessary to evaluate the extent to which these new
operators improve the accuracy of GB calculations in different
molecular systems as well as in applications aside from
computing Gpol

GB, but so far these new operators appear to be
promising alternatives to the canonical operator of Still et al.16

V.E. Timings. The most time-consuming step in a GB
calculation is typically evaluation of effective Born radii.
Nonetheless, evaluating the pairwise GB energies scales
quadratically with the number of atoms and can eventually
become a significant computational expense. A more efficient
choice of f ij should certainly be a welcome reduction in CPU
time for GB simulations, provided that the accuracy does not
suffer.
Here, we consider the CPU time required by the various

effective Coulomb operators. We measure the CPU time to
compute Gpol

GB for the largest molecule in either of our test sets
(PDB code 1DBF), provided the augmented R6* radii defined
in eq 5.6 are given as input, that is, timings reported here do
not do not include the time required to perform the numerical
surface integration to obtain R6* radii. Calculations on the
other proteins display a similar trend. The calculations are run
in serial on a single 2.5 GHz Opteron core. Timings reported
here are those computed within our development version of Q-
CHEM,63 but we also confirmed that the same trends can be
observed using a stand-alone program that eliminates any
possible overhead introduced by the Q-CHEM program. The
pairwise loops for each operator are coded as similarly as
possible to facilitate a fair comparison. Charges, effective Born
radii, and atomic positions are stored in core memory, but we
also compare the CPU time required to compute rij (or rij

2 for
f ij
Still and f ij

sphere) versus having rij stored in memory. The small
overhead associated with computing Ri

1/2 is included in the
timings for f ij

exp and f ij
p16 . For efficiency in evaluating Ωij

p16 (eq
4.12), we first compute the quantity

ζ
=

+
x

R R

R R r

( )

( ) /16
i j

i j ij

1/2

1/2
(5.7)

and then successively self-multiply it four times. The product
(RiRj)

1/2 need only be computed once per atom pair, and the

Figure 2. Inverse augmented R6* radii (eq 5.6 with a = 0.011 Å−1)
versus perfect effective Born radii obtained from C-PCM calculations
for all 12 407 atoms of the small protein training set. The RMS
deviation is 0.012 Å−1.
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constant ζ/16 can be held in memory. As such, we can
compute Ωij

p16 using just eight floating point operations, of
which only one is a division operation.
Timings are presented in Figure 3. Of the operators

considered here, the canonical Still operator, f ij
Still, is clearly

the most expensive to compute with or without the availability
of pairwise distances. Without saved distances, f ij

sphere is the least
expensive but is also the least accurate in our tests. The
operator f ij

p16 is more expensive than f ij
sphere when the rij are not

saved, because computing rij from rij
2 = ri⃗·rj⃗ requires a call to the

square root function. However, since f ij
p16 is more accurate than

f ij
sphere (for general nonspherical cavity shapes), this is a small
price to pay for the significantly improved accuracy of f ij

p16. On
the other hand, when the rij are stored, the function f ij

p16 is
actually slightly faster to evaluate as compared to f ij

sphere . More
importantly, f ij

p16 achieves a speedup of a factor of 3 relative to
f ij
Still, owing to the fact that f ij

p16 does not call the square root
function inside of the pairwise loop. Since f ij

p16 is also the most
accurate interaction operator considered here, it is a very
attractive choice for GB calculations.

VI. CONCLUSIONS

We made a formal comparison of the GB model (in both its
conventional and “GBε” forms30,31) to PCM theory15 and,
specifically, to the conductor-like PCM, known in the literature
as either C-PCM or GCOSMO.33,35 In addition, we
investigated some alternatives to the “canonical” effective
Coulomb operator16 that is widely used in GB calculations.
The following list summarizes our principal results.

(1) The conventional GB model is equivalent to C-PCM
insofar as one employs an effective Coulomb operator
and “perfect” effective Born radii that are both exact in
the conductor limit. (This is the only choice that is
asymptotically correct for high-dielectric solvents.) The
accuracy of conventional GB calculations is therefore
limited by the accuracy of C-PCM. The latter provides an
approximation (albeit a fairly accurate one in high-
dielectric solvents) to the electrostatic solvation energy
that would be computed from Poisson’s equation for the
same solute cavity and dielectric constant.

(2) As found in previous studies,28 effective radii obtained
from “R6” integrals are quite close to perfect effective
Born radii obtained in the conductor limit. As such, the
accuracy of conventional GB calculations with R6 radii
approaches the accuracy of C-PCM calculations.

(3) We propose a simplified effective Coulomb operator for
conventional GB calculations. For a set of small proteins,
where perfect effective Born radii can be computed using
C-PCM, this alternative operator reduces the error in the
electrostatic solvation energy by roughly 0.3% relative to
the canonical operator introduced by Still et al.,16 which
exhibits a statistical error of about 1.0%. For a set of
larger biomolecules, the alternative operator continues to
perform better than the canonical operator when
augmented R6 radii are employed. Furthermore, the
alternative operator is significantly less expensive to
compute as compared to the Still et al. operator, by
nearly a factor of 3.

Table 3. Error Statisticsa in the Total Solvation Energy, Gpol, Using R6* Radiib and Various Forms of f ij for a Training Set of
Small Proteins

Still operator new operators

sphere operator c = 4.0 c = 5.5 exp p16

MSE 7.63 (1.31) 2.43 (0.10) 4.82 (0.48) 2.03 (0.17) 0.26 (0.01)
SD 9.01 (1.77) 10.72 (1.15) 8.80 (0.78) 8.00 (0.71) 7.21 (0.62)
RMSE 11.81 (2.20) 11.00 (1.16) 10.04 (0.91) 8.25 (0.73) 7.22 (0.62)
MAE 10.14 (1.43) 8.73 (0.96) 7.67 (0.75) 6.05 (0.57) 5.06 (0.46)
Max. AE 19.48 (7.10) 22.14 (2.03) 21.91 (1.63) 18.45 (1.65) 18.65 (1.67)

aErrors in kcal/mol with % errors in parentheses. Other nomenclature is the same as in Table 1. bRadii defined by eq 5.6 with a = 0.011 Å−1.

Table 4. Error Statisticsa in the Total Solvation Energy, Gpol, for a Set of Larger Biomolecules Using R6* Radii Optimized for
the Protein Training Setb

Still operator new operators

sphere operator c = 4.0 c = 5.5 exp p16

MSE 13.74 (1.43) 4.69 (0.19) 9.29 (0.60) 2.86 (0.27) −1.40 (0.09)
SD 24.13 (1.58) 12.16 (1.04) 10.08 (0.74) 9.91 (0.76) 10.85 (0.76)
RMSE 27.76 (2.13) 13.03 (1.05) 13.71 (0.95) 10.32 (0.81) 10.94 (0.76)
MAE 21.64 (1.60) 10.48 (0.76) 10.86 (0.74) 8.62 (0.61) 8.25 (0.57)
Max. AE 78.50 (8.49) 30.93 (4.48) 33.23 (2.54) 20.47 (2.97) 31.84 (2.85)

aErrors in kcal/mol with % errors in parentheses. Other nomenclature is the same as in Table 1. bRadii defined by eq 5.6 with a = 0.011 Å−1.

Figure 3. CPU timings for computing Gpol
GB for the protein 1DBF for

various choices of f ij. Data are shown for saved rij (right) as well as
unsaved rij (left).
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It is our hope that these results will help to guide the future
development of the GB model as well as enhance its efficiency
and accuracy.

■ APPENDIX A
PCM Integral Operators
Here, we briefly define the PCM integral operators
encountered in this work. More thorough discussions can be
found elsewhere.15,42,66

The electrostatic potential produced by a solute charge
density, ρ, at an arbitrary point r,⃗ is

∫ϕ ρ
⃗ = ′⃗

| ⃗ − ′⃗|
′⃗r

r
r r

r( )
( )

d3
(A1)

If ρ consists of a single point charge, qi, located at position ri⃗,
then the potential is

ϕ ⃗ =
| ⃗ − |⃗

r
q

r r
( )i

i

i (A2)

The apparent surface charge density in PCM theory is denoted
σ(s)⃗, where s ⃗ represents a point on the solute cavity surface.
The reaction-field potential generated by σ(s)⃗ at any point in
space is

∫χ σ
⃗ = ⃗

| ⃗ − ⃗|
⃗r

s
r s

s( )
( )

d2
(A3)

For a point on the cavity surface, the self-adjoint integral

operator ̂ is defined by the equation

σ χ̂ ⃗ = ⃗s s( ) ( ) (A4)

The outward-pointing normal component of the electric field,
arising from the apparent surface charge σ and evaluated at the
point s ⃗ on the cavity surface, is equal to the directional
derivative ∂s ⃗ χ(s)⃗ . This is used to define the adjoint of another
integral operator, ̂ :

σ χ̂ ⃗ = ∂ ⃗
†

⃗s s( ) ( )s (A5)

The integral operators ̂ and ̂ obey the identity ̂ ̂ = ̂ ̂ †,
but this identity typically does not hold once the integral
operators are discretized.41 For convenience, we also define

π
̂ = ̂ − ̂1

2 (A6)

where ̂ is the identity operator. The operator ̂ appears in
the definition of Ĉε in eq 3.12.

The form of the response operator ̂ in eq 3.4 depends upon
the particular flavor of PCM that is used. Response operators
for each of the PCMs discussed in this work are listed in Table
5. Note that the C-PCM response operator lacks the term

proportional to ε−1 that is present in the IEF-PCM/SS(V)PE
operator; this term is required for an exact result but is quite
small for ε ≈ 80.41 We also note that each of these PCMs is
exact in the conductor limit, ε → ∞. If the surface charge
computed in the conductor limit is scaled by a factor of (ε −
1)/ε, the result is precisely the working equation for the C-
PCM method. This is the sense in which C-PCM is
“conductor-like”. (However, we recently presented a more
rigorous and satisfying derivation of this model, which does not
require ad hoc scaling of the surface charge.55)

■ APPENDIX B
Comparison to the Generalized Kirkwood Model
In section III we derived several formal connections between
PCMs and GB models for solute charge densities composed of
point charges only. Here, we illustrate that it is possible to
extend the pairwise-additive approximation for the electrostatic
solvation energy to higher-order multipoles, as in the
generalized Kirkwood model.44,45

Suppose that the MM solute consists of a set of atom-
centered multipoles. We can partition the electrostatic potential
at the cavity surface, ϕ(s)⃗, into contributions from each
multipole order (cf. eq 3.6)

∑ ∑ϕ ϕ⃗ = ⃗
=

∞

s s( ) ( )
i l

i
0

( )

(B1)

Here, ϕ
→
s( )i

( ) is the electrostatic potential arising from the lth-
order multipole centered on atom i. The surface charge density
can be partitioned in a similar way,

∑ ∑σ σ⃗ = ⃗
=

∞

s s( ) ( )
i

i
0

( )

(B2)

where σ ϕ= ̂
i i
( ) ( ) and ̂ is one of the response operators

defined in Table 5.
Substitution of the multipole expansions of ϕ(s)⃗ and σ(s)⃗

into eq 3.3 affords an analytic expression for the electrostatic
solvation energy in PCM theory,

∫∑ ∑ σ ϕ= ⃗ ⃗ ⃗
∞

G s s s
1
2

d ( ) ( )
i j m

i j
m

pol
PCM

, ,

( ) ( )

(B3)

Next, define

∫∑ σ ϕ= ⃗ ⃗ ⃗
∞

G s s s
1
2

d ( ) ( )ij
m

i j
m

pol,
PCM

,

( ) ( )

(B4)

To obtain a GB-like approximation, one must find appropriate
analytical expressions for the self-energies, Gpol,ii

PCM, and pairwise-
additive energies, Gpol,ij

PCM. The Kirkwood model46 of an arbitrary
multipole in a spherical cavity accomplishes this for the self-
energies, just as the Born ion model (which is the l = 0 case of
the Kirkwood model) does in traditional GB theory. Then,
appropriate choices for the multipole−multipole effective
Coulomb operator must be made for the pairwise-additive
terms, which is the topic of a recent study.45

■ APPENDIX C
Biomolecule Data Sets
The Protein Data Bank (PDB) abbreviations of the
biomolecules used in this work are listed below. Molecules
were prepared with the Tinker software,65 v. 4.2. Any water

Table 5. Response Operators for Various PCMs

model response operator, ̂ ̂
conductor − ̂ −1

C-PCM/GCOSMOa
−kε−1 ̂ −1

COSMO −[(ε − 1)/(ε + 0.5)] ̂ −1

IEF-PCM/SS(V)PEa,b −kε−1Ĉε
−1

aThe factor kε = ε/(ε − 1). bThe operator ε̂ is defined in eq 3.12.
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molecules present in the PDB structures were removed. Where
multiple conformers are available in the PDB, the structure “A”
or “1” was selected.
1. Small Protein Training Set. 1AJJ, 1BBL, 1BOR, 1BPI,

1CBN, 1FCA, 1FXD, 1HPT, 1MBG, 1PTQ, 1R69, 1SH1,
1UXC, 1VII, 1VJW, 2ERL.
2. Large Biomolecule Data Set. 1AB3, 1AB7, 1APC, 1AZ6,

1BDD, 1BH4, 1BJ8, 1BKU, 1BMX, 1BNO, 1BRV, 1BY1,
1BYY, 1BZG, 1CG7, 1CMR, 1CN2, 1D7Q, 1DBF, 1DMC,
1EP0, 1ERD, 1EXG, 1FVL, 1FYC, 1G25, 1GIO, 1HP8, 1IHV,
1LXL, 1MFN, 1MUN, 1NLS, 1PCP, 1PMS, 1QDP, 1QQF,
1RCH, 1ROT, 1SGG, 1TLE, 1VII, 2BNA, 2EZK, 2HMX, 2JV3,
2LZT, 2MB5, 2SOB, 2TRX, 2VIK, 3VUB, 4ULL, 7A3H.
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