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ABSTRACT: We introduce a multistate framework for
Fragment Molecular Orbital (FMO) quantum mechanical
calculations and implement it in the context of protonated
water clusters. The purpose of the framework is to address
issues of nonuniqueness and dynamic fragmentation in FMO
as well as other related fragment methods. We demonstrate
that our new approach, Fragment Molecular Orbital Multistate
Reactive Molecular Dynamics (FMO-MS-RMD), can improve
energetic accuracy and yield stable molecular dynamics for small protonated water clusters undergoing proton transfer reactions.

1. INTRODUCTION

The computational cost of ab initio quantum chemistry
calculations is very high, usually scaling with respect to the
number of electron basis functions as a function of some
exponent [e.g., second order Møller−Plesset theory, MP2,
generally scales as O(Nbasis

5 )]. This cost is a serious hindrance to
the modeling of increasingly larger and complex molecular
systems with quantum chemistry. In recent years, though,
several new approaches have been devised to approximate the
full quantum calculation of a molecular system through some
combination of relatively smaller, more feasible quantum
calculations on subsets of the molecular system. In particular,
we are referring to fragment methods in quantum chemistry.1

There are many fragment methods used in practice today,
including the Fragment Molecular Orbital (FMO) method,2−6

the Electrostatically Embedded Many-Body Expansion (EE-
MBE) method,7,8 the Explicit Polarization (X-Pol) method,9

the X-Pol/Symmetry Adapted Perturbation Theory method,10

the Molecules-in-Molecules method,11 and the Binary Inter-
action Method,12,13 just to name a few. It is not our intention to
discuss all of them here, and we instead refer the reader to
recent reviews on the topic.1,14

In this work, we will focus almost exclusively on the FMO
method as our prototypical fragment method. Fragment
methods all share the common notion that the entirety of a
given molecular system can, in some prescribed way, be divided
up into a set of fragments. However, the fragmentation of a
system is not always straightforward, such as when fragmenting
across covalent bonds or when chemical reactions take place.
The important consequence is that the final energy of a
fragment method can be highly dependent on the molecular
fragmentation procedure. A given molecular system does not
always have a unique fragmentation. Moreover, if molecular
dynamics (MD) is propagated, a certain procedure might cause

the fragmentation to vary between adjacent time steps, an issue
known as dynamic f ragmentation.15

The nonuniqueness and dynamic fragmentation issues of
fragment methods are curiously similar to issues addressed by a
certain class of classical molecular mechanics reactive force
fields, specifically, the Multistate Empirical Valence Bond (MS-
EVB) force fields.16−18 In MS-EVB, a reactive molecular system
is represented by some linear combination of multiple states,
each state having a different bonding topology. These states
form a basis set, and MD can be propagated with MS-EVB by
determining the basis of states on-the-fly. However, some
drawbacks of past MS-EVB modelsand common to most
popular classical force fieldsare that they can require an
elaborate fitting procedure for many parameters and that they
might lack certain important physical properties, such as charge
polarization.
In this paper, we suggest that FMO and MS-EVB are

complementary. Nonuniqueness and dynamic fragmentation in
FMO can be addressed by adopting the multistate approach of
MS-EVB. Correspondingly, the accuracy of MS-EVB can be
improved by basing it on FMO. We dub our new hybrid
approach the Fragment Molecular Orbital Multistate Reactive
Molecular Dynamics (FMO-MS-RMD) method. FMO-MS-
RMD constitutes a general framework in the sense that the
underlying multistate idea can be extended to any fragment
method applying any level of electronic structure theory. It can
also be adapted to many (though not necessarily all) chemically
reactive systems, not just the example of proton transfer in this
work. Compared to existing methods, FMO-MS-RMD is
perhaps most closely related to the Effective Hamiltonian
Molecular Orbital-Valence Bond (EH-MOVB) model of Gao
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and co-workers,19 but the two differ in a number of significant
ways.
As an initial implementation of our concept, we introduce

FMO-MS-RMD in the context of protonated water clusters
treated with FMO at the MP2/cc-pVDZ level. Our formulation
of FMO-MS-RMD embraces some degree of empiricism
motivated by our experience with previous reactive MD
multistate models,16−18 yet it still retains much of the appealing
ab initio flavor of FMO. After describing the framework, we
present a series of results to exhibit the improvements made by
FMO-MS-RMD. A discussion on how FMO-MS-RMD might
be applied to other chemically reactive systems is presented in
the Appendix.

2. THEORY
In FMO, the total system energy, EFMO, is expressed via the
many-body expansion,1
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(1)

For our purposes, we truncate the many-body expansion at
two-body order (i.e., FMO2), although higher order terms
could be incorporated to improve the energy accuracy.6 The
monomer energy, EI, is the quantum mechanical (QM) energy
of the I-th fragment embedded in the electrostatic field of all
other fragments. Similarly, EIJ is the QM energy of the dimer of
fragments I and J embedded in the electrostatic field of all other
fragments. These fragment QM energies could be computed at
any level of electronic structure theory (e.g., Hartree−Fock,
Density Functional Theory, Møller−Plesset theory, etc.).
Traditionally, FMO computes the monomer energies and
electrostatic field self-consistently until convergence.3,5 How-
ever, for simplicity in the introduction of FMO-MS-RMD, the
electrostatic field in our current formulation is represented by a
set of fixed (i.e., static) point charges centered at each atom,
which greatly simplifies our computational algorithm, our fitting
procedure, and the computation of analytic gradients. That is,
EFMO in this work is a “frozen charge” FMO energy and is
technically equivalent to an EE-MBE approach of Dahlke and
Truhlar.7 Nonetheless, we impose no particular restriction to
how the electrostatic field is to be represented in the general
framework of FMO-MS-RMD, and our choice to name our
method with FMO is intended to reflect that point since FMO
theory has been developed for a variety of embedding
electrostatic fields. We acknowledge that the use of fixed
point charges in our current formulation of FMO-MS-RMD as
applied to protonated water is not the most sophisticated way
to incorporate environmental electrostatics, perhaps not fully
capturing certain electrostatic effects such as induction, but we
anticipate that future renditions of FMO-MS-RMD will indeed
include improved electrostatics, such as self-consistently
determined Mulliken charges.
Note that EFMO depends on the choice of fragmentation.

Certain fragmentations are a better approximation to the true
QM energy of the full molecular system, EQM . However,
arriving at the best fragmentation is not always immediately
clear (see Figure 1).
FMO-MS-RMD aims to overcome fragmentation non-

uniqueness by taking into consideration multiple fragmenta-
tions at once. The multistate ansatz of FMO-MS-RMD is that
the total molecular system is a linear combination of different
fragmentations (i.e., “states”), or different ways to arrange the

chemical bonding topology, in other words. It is convenient to
express this in the familiar bra−ket notation,

∑|Ψ ⟩ = |Ψ ⟩c
A

N

A Atot

states

(2)

where |ΨA⟩ represents the A-th fragmentation state with
normalized coefficient cA. The FMO-MS-RMD total system
state, |Ψtot⟩, is an approximation (in the basis of fragmentation
states) to the full, nonfragmented molecular system corre-
sponding to energy EQM. The linear combination of states in eq
2 leads to a model Hamiltonian matrix with elements HAB. For
illustration, a schematic of possible fragmentation states for a
protonated water tetramer is shown in Figure 1.
We then make the ansatz that each diagonal element is given

by the FMO energy of the A-th fragmentation state, EA
FMO, but

with the addition of two empirical penalty terms,

= + +H E E EAA A A A
FMO intra inter

(3)

Our motivation for the penalty terms is derived purely from
experimentation. Based on our experience, relying on EA

FMO

alone is not sufficient to filter out “bad” fragmentation states
with high energies that are very unlikely or are poor estimates
of EQM. We find that the penalty terms are necessary to disfavor
such states. For example, a poor fragmentation might place an
atom represented as an external charge too close to a QM
fragment and strongly overpolarize the electron density of that
fragment, rendering it much lower in energy than EQM and
causing a failure of the model. The empirical penalties are
intended to compensate in this scenario by raising the energy of
HAA. For “good” fragmentations, though, the penalties are zero
or relatively small compared to the FMO energy. In the
implementation of FMO-MS-RMD presented here, we develop
empirical formulas for these penalties specific to protonated
water. Nonetheless, we believe that one can develop similar
empirical formulas for other chemically reactive systems, yet it
is quite possible that there may be some more ab initio
approach available that we have not considered here.
The first term in eq 3, EA

intra, is an intrafragment penalty based
on a priori defined covalent bonds within each fragment. For
water and hydronium fragments as in Figure 1, only O−H
bonds are present, and we set EA

intra to

Figure 1. Schematic of four possible fragmentation states in a
protonated tetramer of water. Dashed blue lines indicate neutral water
fragments, and dashed red lines indicate positively charged hydronium
fragments.
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where rOH
I is an O−H bond distance for the I-th fragment

(water or hydronium). We employ a well-known sigmoidal
switching function,
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to establish a distance-based switching region for the
intrafragment penalty. (We also use eq 5 in the interfragment
penalty described below.) The switching region for eq 4 is
between the bond distance parameter, rb, and the cutoff
distance, rcut. By squaring the part of eq 6 in the square
brackets, we guarantee a smooth and continuous derivative at
the end points of the switching region. The parameters kintra, rb,
and rcut are left to be determined (see below). The penalty EA

intra

ensures that fragmentation states with unusually elongated
bonds are disfavored and can be safely neglected in a state
search (see Section 4).
The second penalty term in eq 3, EA

inter, is an interfragment
penalty based on the proximity of atoms in a donor reactive
fragment (i.e., H3O

+) to the atoms of a reactive acceptor
fragment (i.e., H2O). We set EA

inter to
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where rij is the distance from O atom i in an acceptor water
fragment to H atom j in the donor hydronium fragment. The
switching function is the same as in eq 5, and it is also squared
to guarantee a smooth and continuous derivative at rcut. The
parameters kinter and rcut are left to be determined (see below).
The penalty EA

inter disfavors fragmentations where a donor
hydronium H atom is closer to an acceptor water fragment O
atom than to the donor hydronium O atom, in which case a
different fragmentation of the molecular system could be a
better approximation to EQM. Note that the interfragment
penalty is zero beyond rcut.
The off-diagonal coupling elements, HAB, in the Hamiltonian

matrix are representative of a chemical reaction occurring (a
proton transfer in the current formulation) between states A
and B. The formula for HAB is empirical in this work, although a
more ab initio based expression similar to that of the EH-
MOVB model19 could work as well. For protonated water, the
HAB elements are nonzero only for those pairs of states wherein
the hydronium fragment in state A and the hydronium
fragment in state B both share a single hydrogen atom. That
is, the j-th hydrogen atom must belong to the hydronium
fragment in state A as well as to the hydronium fragment in
state B. This represents a proton transfer from state A to state B
or vice versa. Also, the coupling is zero if the hydronium
fragment in A and B share the same oxygen atom, which would
be representative of a nonsensical self-reaction. We relate the
empirical expression for coupling to the interfragment penalty
in eq 6. It is simply the geometric mean of the contribution to
EA
inter from the H atom traveling between states A and B,

=H h hAB AB BA (7)

with

=h k f r r( , 0, )AB ij
AB

inter cut
2

(8)

where rij
AB is the distance between the shuttling H atom i in

state A and the hydronium oxygen atom j in state B. The
geometric mean in eq 7 ensures that the coupling smoothly
goes to zero as the fragments A and B become distant (i.e.,
having O−H distances beyond rcut), where a proton transfer is
unlikely.
Once the model Hamiltonian matrix has been constructed, it

is then diagonalized, yielding a set of eigenvalue energies, EA,
and a corresponding set of eigenvector coefficients cA from eq
2. The total FMO-MS-RMD energy is assigned to be the
minimum energy eigenvalue, Etot = min(EA). The force on each
atom i can then be computed via the Hellmann−Feynman
theorem,

∑ψ ψ= −⟨ |∂ ∂ | ⟩ = − ∂
∂F c c
H

H x
x

/i i
A B

A B
AB

i

tot tot

, (9)

For computing ∂HAB/∂xi, force contributions from the
empirical penalty and couplings are straightforwardly derived.
Then, with fixed embedding charges, as we use in our current
model, the fully analytic FMO force for each state can be
readily obtained as the linear combination of energy gradients
analogous to eq 1.8 The gradient of the FMO energy for each
state is obtained as the analytic gradient for each QM fragment
calculation (monomers and dimers) plus the force exerted on
the surrounding embedding charges due to the QM fragment.
We have verified that our implementation of the FMO-MS-
RMD analytic gradient is accurate to at least 1.0 × 10−5

hartree/bohr (1.0 × 10−3 kcal/mol/Å) by comparison to
numerical finite difference via the midpoint method.

3. PARAMETERIZATION
The above discussion defines the framework for FMO-MS-
RMD in the context of protonated water. What remains to
complete the implementation of the model is to decide upon a
level of electronic structure and to obtain values for the model
parameters. Currently, we choose MP2/cc-pVDZ for the QM
fragment calculations in FMO, such that our model
compared with past MS-EVB modelsnaturally incorporates
polarization, charge transfer, dispersion, and other many-body
effects to the extent achieved by FMO. The full set of 6
adjustable parameters in our model is listed in Table 1. For
contrast, MS-EVB3 requires 29 adjustable parameters, though
many of them are fitted serially through a sequence of
uncorrelated steps.17

Arriving at the values for the adjustable parameters in our
current formulation is admittedly not completely straightfor-
ward. We have opted to take as simplistic of an approach to
fitting as possible through a combination of experimentation
and stochastic minimization. Once again, we use fixed point
charges for the electrostatic embedding field in our FMO
calculations. The charge values for water fragments are set to
those of the SPC/E water model,20 and the charge values for
hydronium fragments are set to those of the MS-EVB3
model.17 We assume, at least by precedent, that these are
reasonable charges for modeling the condensed phase electro-
statics of protonated water, and we anticipate that they might
be transferrable to future condensed phase FMO-MS-RMD
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calculations. The intra−fragment penalty parameter rb [eq 4]
was selected based on a scan of possible values in a subset of
protonated water clusters from the Cambridge Cluster
Database21 (more details on this below) with the intent of
penalizing fragmentations with unusually large bond lengths
while not penalizing at all what were deemed the “best”
fragmentations for each cluster. (Water or hydronium frag-
ments with O−H bonds are less than rb receive zero
intrafragment penalty.) After settling on rb, we experimented
iteratively with a set of possible kintra values in subsequent
interfragment penalty fitting and MD stability tests. The
interfragment penalty and coupling parameters [eq 6] were fit
against MP2/cc-pVDZ absolute energies for two small
protonated water clusters, H5O2

+ and H13O6
+, (dimer and

hexamer, respectively) as a function of a proton transfer
coordinate (Figures 2 and 3). The proton transfer data was

obtained as MP2/cc-pVDZ minimum energy pathways at
constrained O−H and O−O distances of 2.2, 2.4, 2.6, 2.8, and
3.0 Å, amounting to 90 data points for fitting. Note that the
proton transfer coordinates are symmetric about the maximum
O−H distance for each O−O distance. To determine the best
kinter at a several values of rcut and fixed experimental kintra
values, simulated annealing in the kinter parameter space (at
fixed rcut values) was used to minimize the root-mean-square
error (RMSE) between EQM and Etot. The combination of kinter
and rcut for a given kintra that produced the minimum error was
selected. The results of this fitting are shown in Figures 2 and 3.

The final RMSE of the fit for all 90 data points is 0.48 kcal/mol.
In addition to fitting, various short MD test runs were
performed to verify that the set of parameters produced stable
MD free of spuriously large forces as proton transfer reactions
took place.
Because we have truncated our many-body expansion at two-

body order, one might expect that FMO-MS-RMD is also exact
for H5O2

+, having only two fragments. However, the empirical
terms in FMO-MS-RMD spoil the exactness at two-body order.
The RMSE of our fit for the subset of data points belonging to
H5O2

+ is 0.39 kcal/mol. For comparison, the RMSE fit for the
H13O6

+ subset of data points is 0.56 kcal/mol. Still, it is not our
intention to perfectly replicate the full MP2 calculation but
rather to find an acceptable approximation for propagating MD
on a potential energy surface similar to MP2 achieved by FMO-
MS-RMD.

4. IMPLEMENTATION
We have implemented our FMO-MS-RMD protonated water
model as an external interface to a development version of the
Q-Chem software package.22 In our implementation, an FMO-
MS-RMD calculation proceeds in four phases: (1) Given a
molecular system geometry and an initial fragmentation guess,
perform a state search (see below) to find states to form the
basis, (2) compute the FMO energy (and gradient if needed)
according to eq 1 for each state of the basis, performing a series
of QM calculations for all fragment monomers and dimers, (3)
compute the empirical terms to fill out the Hamiltonian matrix,
(4) diagonalize the Hamiltonian and obtain the minimum
energy eigenvalue as well as the analytic gradient if needed. MD
can be propagated after phase 4 by using the gradient. In phase
2, the FMO calculations are noniterative. That is, all monomer
and dimer calculations are subject only the fixed charge
embedding field, which does not depend on the other FMO
calculations. If FMO-MS-RMD were implemented with self-
consistently determined charges, then phase 2 would involve a
more complex procedure.
There is considerable parallelism available to an FMO-MS-

RMD computation, and our code uses the Message Passing
Interface (MPI) parallel paradigm to take advantage of it. Each
FMO fragmentation state energy, EA

FMO, is independent and,
because we have opted to use fixed charges, so is every FMO

Table 1. Parameters for the FMO-MS-RMD Protonated
Water Model

parameter value units

qO
H2O −0.8476 e
qH
H2O 0.4238 e
qO
H3O

+

−0.5 e
qH
H3O

+

0.5 e
kintra 0.8 hartree
rb 1.4 Å
kinter 6.41 × 10−3 hartree
rcut 2.4 Å

Figure 2. FMO-MS-RMD fit for H5O2
+. Solid lines correspond to the

target MP2/cc-pVDZ absolute energy of the minimum energy
pathway at the denoted roo constrained distance. Dashed lines with
dots indicate the FMO-MS-RMD fit results. Fit data for roo = 2.2 Å and
roo = 2.4 Å are essentially indistinguishable from the target energy.
RMSE = 0.39 kcal/mol for this subset of data.

Figure 3. FMO-MS-RMD fit for H13O6
+. Solid lines correspond to the

target MP2/cc-pVDZ absolute energy of the minimum energy
pathway at the denoted roo constrained distance. Dashed lines with
dots indicate the FMO-MS-RMD fit results. RMSE = 0.56 kcal/mol
for this subset of data.
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monomer and dimer fragment calculation contributing to EA
FMO.

Our current code runs all of these fragment calculations in
parallel as separate calls to Q-Chem on each MPI rank. A
comparison of timings is presented in the Section 5.
The practical determination of fragmentation states (phase 1

from above) for FMO-MS-RMD is a crucial aspect of
implementation. It is can be unreasonable to include every
possible fragmentation of a protonated water system, for which
there is a roughly factorial number of combinations of oxygen
and hydrogen atoms to form the waters and hydronium. (Other
chemically reactive systems, though, might have few enough
states to use a complete basis of fragmentations and not require
such a state search.) Instead, we accomplish finding
fragmentations using a state search algorithm similar to that
of MS-EVB3.17 The input for the search is a guess at a
fragmentation of the molecular system, which we refer to as the
pivot state. In practice, aside from an initializing guess, the pivot
state we use comes from the immediately preceding step
perhaps a step from MD or geometry optimization. The pivot
state is assigned as |ΨA⟩ with the maximum square amplitude,
cA
2 , from the previous step. Then, given the pivot state and
system geometry, we perform a breadth-first search outwardly
from the pivot state hydronium fragment. Each H atom on the
hydronium donor fragment attempts to “hop” to a nearby O
atom on an acceptor water fragment that is within the cutoff
distance, rcut. A successful hop forms a new possible
fragmentation state from which another set of hops will be
attempted in the next level of the search. The search terminates
when all possible hops have been exhausted or when a certain
threshold level of hops has been reached. In our calculations,
we enforce a threshold of three hops out from the pivot
hydronium. We note that our search implementation is capable
of handling bifurcated hydrogen bonding water molecules, as
has been shown previously to be important in MS-EVB3.17

In general, if the search algorithm is run to exhaustion, there
will be about one fragmentation state per water in a protonated
water system, wherein every water is a hydronium in some
state. As the system grows, though, running the search to
exhaustion is not feasible, and the hop threshold usually
terminates the search. With a zero hop threshold, there is
obviously only a single state, the pivot state. A one hop
threshold will pick up one state for each water hydrogen
bonded to the hydronium, typically three, such that the basis is
formed by a total of four states. With two or more hops, it
becomes less easy to estimate the number of states found in our
search, as it is highly dependent on the geometry of the
hydrogen bonding network. In the cluster calculations in this
paper, we usually find somewhere in the range of 8−15 states
with a three hop threshold.

5. RESULTS: PROTONATED WATER CLUSTERS
To gauge the accuracy of our FMO-MS-RMD model in
systems different from our training set, we compare energies in
a series of protonated water clusters obtained from the
Cambridge Cluster Database.21 The global minimum geo-
metries according to the ASP potential23 were used. The full
MP2/cc-pVDZ absolute energy is compared to the FMO-MS-
RMD absolute energy as well as to the single state whose FMO
absolute energy was closest to the MP2 energy. Because FMO-
MS-RMD is exact (i.e., the same as full MP2-ccpVDZ) for gas
phase optimized geometry water and/or hydronium mono-
mers, comparing the absolute energies of MP2, FMO, and
FMO-MS-RMD is equivalent to comparing their respective

binding energies, although neglecting basis set superposition
error (BSSE). The energy error is computed as ΔE = (E −
EQM), where EQM is the MP2/cc-pVDZ energy of the cluster
and E is either the FMO energy of the fragmentation state
closest to EQM or the FMO-MS-RMD energy. Results are
presented in Figure 4.

The FMO-MS-RMD error is consistently smaller in all cases
except for the protonated water dimer. This shows that our
FMO-MS-RMD model is at least more accurate (usually by
about 3 kcal/mol) than the corresponding closest single state
FMO energy. Nevertheless, the error grows to be quite large
with increasing number of waters, becoming greater than 10
kcal/mol at 15 waters for FMO-MS-RMD. Although we do not
make an in-depth investigation of it here, the increasing error in
the FMO calculations is likely caused in part by BSSE, which
will be quite significant with the relatively small cc-pVDZ
atomic orbital basis set. Another important contribution to the
error is likely from the lack of a self-consistent embedding field,
which we have mentioned before. Presumably, one could then
improve upon the error by employing a larger atomic orbital
basis set and/or using self-consistently determined charges,
which is something we expect can be explored in future
renditions of FMO-MS-RMD.
In tests not shown here, we tracked the convergence of the

energy error with respect to increasing the fragmentation basis
as a function of changing the state search hop threshold. For
these clusters, however, the error convergence is negligible
beyond just one hop, where using two or three hops modifies
the FMO-MS-RMD energies by less than 0.01 kcal/mol. We
attribute the fast convergence to the clusters being at a
minimum energy structure that seems to favor a predominantly
“eigen-complex” motif (similar to what is depicted in Figure 1),
which can be inferred from the FMO-MS-RMD eigenvector
coefficients. Because of the eigen-complex character, hops
beyond two from the pivot state are unfavorable, and the FMO-
MS-RMD energy is quite well described at just one hop.
However, we stress that it is crucial to MD stability to use more
than one hop in the state search threshold to minimize or
eliminate the impact of dynamic basis set discontinuities during
proton transfers (see Section 6).
We also present timing data for the cluster series in Figure 5.

FMO-MS-RMD clearly incurs more computational cost
compared to regular FMO, since it involves multiple FMO
calculations. The computational cost of FMO (truncated at

Figure 4. Absolute energy error in kcal/mol relative to MP2/cc-pVDZ
of the closest FMO state and FMO-MS-RMD for the Cambridge
cluster database global minimum geometries.
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dimer level) scales like O(Nfrag
2 ), and FMO-MS-RMD scales

such as O(NstatesNfrag
2 ). This raises the concern that FMO-MS-

RMD might be too costly, perhaps even worse than full MP2.
On the contrary, Figure 5 shows that the total wall time for an
FMO-MS-RMD energy calculation executed in serial scales
better than the full MP2/cc-pVDZ energy calculation, crossing
over to lesser wall time at a cluster size of about 14 waters. We
also compare against the serial timing using RI-MP2, the
Resolution of the Identity approximation for MP2, which tends
to be much less costly than regular MP2. In Figure 5, we see
that in serial RI-MP2 is actually faster than FMO-MS-RMD in
these clusters. It does appear, though, judging by the slopes in
Figure 5, that FMO-MS-RMD will eventually becoming faster
than RI-MP2 in serial if the plot were extrapolated to larger
water clusters. Computational speed aside, the memory
requirements for FMO-MS-RMD scale linearly with system
size, requiring no more core memory than that of a dimer FMO
calculation. MP2 and RI-MP2 memory requirements are
significantly larger and could limit their feasibility in larger
molecular systems.
While the evidence that RI-MP2 can be faster than FMO-

MS-RMD may seem discouraging, one of the biggest
advantages of FMO-MS-RMD is that it is readily parallelized.
Each fragmentation state constitutes a set of independent FMO
calculations that can be distributed evenly across processors. To
illustrate, we show that running FMO-MS-RMD in parallel with
a mere six processors (parallelizing over fragmentation states) is
dramatically faster than both the MP2 and the RI-MP2 serial
calculations, and it exhibits a nearly perfect speedup. Our code
implementation, though, has the ability to scale across many
more processors by additionally distributing the individual
monomer and dimer calculations, not just the states. For
instance, in the MD calculations presented in Section 6, we use
up to as many as 256 processors in parallel with appreciable
parallel efficiency.

6. RESULTS: MOLECULAR DYNAMICS
Our goal in developing FMO-MS-RMD is not so much to
produce more accurate absolute energies, as in Section 5, but
more to be able to propagate stable MD based on FMO in a
system undergoing chemical reactions. To put our model to the

test, we ran a 30 ps MD trajectory with FMO-MS-RMD on a
protonated heptamer water cluster (H15O7

+). MD was run with
a 1.0 fs time step in the constant NVE ensemble to measure
energy conservation, a metric we use here for MD stability.
Figure 6 shows the total (potential plus kinetic) energy

across the whole trajectory. The mean energy is −335160.7

kcal/mol with a standard deviation of 2.3 kcal/mol. One can
infer from Figure 6 that energy is not perfectly conserved, noting
the slight drift that occurs from the beginning to about 10 ps.
The energy drift, though, is comparable to the magnitude of
energy fluctuations and is effectively continuous. Slow drift in
total energy is known to be a feature of some multistate
methods, such as MS-EVB3, and it is ultimately a result of small
energy discontinuities brought about by the finite-sized
dynamic basis of states used in the model Hamiltonian matrix,
where weakly coupled states possibly appear/disappear as the
molecular geometry and pivot state change throughout the
trajectory. It is possible to improve energy conservation by
including more states, but this comes at the cost of incurring
more CPU time for a likely small correction. If one is able to
include all possible fragmentation states under consideration
(i.e., a complete basis of fragmentation states), then FMO-MS-
RMD will not be subject to finite basis discontinuities
whatsoever. Inclusion of all possible states is difficult for
protonated water but might very well be feasible in other
chemically reactive systems, for example, a two state model of
some donor−acceptor reaction.
Nevertheless, we believe that the performance of our FMO-

MS-RMD model with regard to energy conservation is
acceptable and is demonstrably stable for the time scales in
which we expect FMO-MS-RMD could be feasibly applied.
Consider the stability of the MD as proton transfers takes place.
Throughout the 30 ps trajectory, we observe qualitatively that
nine distinct proton transfers occur, changing which fragment
most resembles a hydronium. These proton transfers often
happen with the shuttling proton shortly oscillating between
two water fragments before finally being more completely
accepted by one of the two fragments. This behavior can be
observed more quantitatively by tracking the index of the
fragment (or O atom) that belongs to the hydronium fragment
in the pivot state (i.e., the state with the maximum cA

2). This is
shown in Figure 7. The pivot state hydronium “jumps” several
times between fragment indexes, representative of a proton
transfer. The pivot state hydronium is seen to traverse most of

Figure 5. Wall times for MP2/cc-pVDZ, RI-MP2/cc-pVDZ, and
FMO-MS-RMD on the Cambridge cluster database global minimum
geometries. Calculations were performed on a 2.40 GHz 6-core Intel
Xeon(R) CPU. MP2/cc-pVDZ data points for clusters with more than
17 waters are omitted for clarity.

Figure 6. Total energy for the 30 ps MD trajectory of H15O7
+.
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the fragments, indicating that the hydronium fragment migrates
throughout the water cluster over the course of the MD. The
observation that FMO-MS-RMD is free of spuriously large
discontinuities in its total energy throughout these proton
transfers supports our assertion that the model is indeed stable
for propagating MD.
Furthermore, FMO-MS-RMD tends to follow a potential

energy surface very similar to the full MP2/cc-pVDZ
calculation. Figure 8 shows the evolution of the potential

energy of FMO-MS-RMD, MP2/cc-pVDZ, and four selected
fragmentation states extracted from the first 3 ps of the MD
trajectory. The MP2/cc-pVDZ energy line is, of course, our
target, and FMO-MS-RMD seems to mostly resemble it with a
relatively small offset. Contrast this with the four FMO states.
Initially, the FMO state represented with the blue line in Figure
8 is the “best” state, being the pivot state in FMO-MS-RMD
and somewhat mimicking the MP2/cc-pVDZ line. But, at about
1600 fs, a proton transfer takes place, and the green line FMO

state becomes the pivot state. The blue line FMO state then
drifts out of favor to higher energies, and as another proton
transfer takes place, the purple line FMO state comes into
favor. Thus, we see that FMO-MS-RMD successfully and
smoothly interpolates between these different fragmentation
states in such a way that tends to maintain its similarity to the
MP2/cc-pVDZ energy. This clearly displays the ability of
FMO-MS-RMD to handle dynamic fragmentation. If instead
we had chosen to use some sort of distance based criteria to
determine which fragment should be a hydronium, then we
would introduce significant energy discontinuities hopping
from one fragmentation state to another during a proton
transfer, akin to jumping between the FMO energy lines in
Figure 8, which would very likely result in poor energy
conservation.

8. CONCLUSIONS
We have introduced a new multistate framework for FMO
calculations, which could potentially be extended to other
fragment methods and any level of electronic structure theory.
Our framework, FMO-MS-RMD, has been implemented as an
initial example for protonated water clusters based upon the
FMO/MP2/cc-pVDZ level of theory with noniterative FMO
calculations. Our FMO-MS-RMD model includes a few
empirically chosen functions to ensure proper interpolation
between different fragmentation states, and we have shown that
this model yields stable MD for a small water cluster where
frequent proton transfer reactions take place. Our implementa-
tion of FMO-MS-RMD can be viewed as an improvement in
terms of accuracy over our previous MS-EVB models.
Moreover, FMO-MS-RMD tends to be somewhat more
accurate for energy than FMO alone in our tests. FMO-MS-
RMD is more computationally expensive than FMO, but it
benefits greatly from parallel computing because each
fragmentation state is independent. Future research in applying
the FMO-MS-RMD model to the condensed phase with
periodic boundary conditions and quantum mechanics/
molecular mechanics (QM/MM) is underway in our group.

■ APPENDIX

Modeling Other Chemical Reactions
We have suggested throughout this work that FMO-MS-RMD
represents a framework that could be expanded to various other
chemical reactions. We discuss this further here with a few
hypothetical examples. We do not examine the fine details or
merits of modeling these reactions with FMO-MS-RMD but
bring them up merely for illustration.
The key concept behind applying FMO-MS-RMD to

modeling a chemical reaction step is to envision how a
molecular system might be fragmented correspondingly into a
reactant state and a product state. More generally, there may be
several reactant and/or product states representative of a series
of reactions, as is the case in protonated water. For example,
FMO-MS-RMD is well suited to handle any chemical reaction
that follows a donor−acceptor paradigm: D−X + A → D +
X−A, where X is the atom or molecular group being
transferred. D−X and A are separate fragments on the reactant
side, and D and X−A are fragments on the product side. Proton
transfer obviously follows this donor−acceptor paradigm. The
well-known SN2 type reaction, which includes a wide variety of
examples, also fits this paradigm; the donor is the leaving group,
and the acceptor is the nucleophile. A concrete example of an

Figure 7. Pivot state hydronium fragment index throughout the 30 ps
MD trajectory of H15O7

+. Jumps are indicative of proton transfers
between fragments, which are often oscillatory before a complete
transfer.

Figure 8. Comparison of four FMO state potential energies (blue,
orange, green, and purple dashed lines) and FMO-MS-RMD potential
energy (solid red line) to the full MP2/cc-pVDZ potential energy
(solid black line) for first 3 ps of MD trajectory of H15O7

+. Data is
shown at intervals of 100 time steps for visual clarity. Note that the
FMO energies do not include the empirical terms EA

inter and EA
intra.
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SN2 reaction that potentially could be studied with FMO-MS-
RMD is the reaction of ethyl bromide with hydroxide (in
aqueous solution): EtBr + OH− → Br− + EtOH, where the
ethyl group is being transferred between the bromine donor
and the hydroxide acceptor. Another possible reaction FMO-
MS-RMD could be applied to is dissociation/association
reactions (depending on direction): R−X → R + X. One
simple concrete example might be aqueous heterolytic
dissociation of KCl. Another example might be the individual
dissociation/association steps of an SN1 type reaction. It is
even conceivable that one could use FMO-MS-RMD to model
more than one individual step of a multi-step chemical reaction
all at once, where each intermediate reactant/product state is
merely a different fragmentation of the molecular system.
Of course, the above just describes how to make a multi-state

ansatz used for the FMO calculations. The remaining difficulty
will be deciding on how to model off-diagonal coupling as well
as any penalties. It is likely that one could develop distance
based switching regions similar to what we have done for
protonated water, but there are probably several other avenues
one could take. This open topic is something we intend to
explore in future work with FMO-MS-RMD.
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