
Particle Networks: A Variation on Multilayer Perceptrons

with Spatial Pairwise Kernels

Adrian W. Lange

January 6, 2016

Abstract

We present a formulation of an Artificial Neural Network akin to the classic Multilayer Per-
ceptron model but with weight matrices replaced by implicit pairwise kernels between units. We
call our neural network model a Particle Network. Each unit in a Particle Network is conceptu-
alized as a particle with a variable amplitude, phase, and position in Rn. Units interact between
layers via a chosen kernel function, and input data is passed through the network in the usual
feed-forward pattern of Multilayer Perceptrons. We exhibit our model with an experiment on
the MNIST digit dataset and discuss possible advantages of Particle Networks, such as O(N)
computer memory cost, O(N logN) algorithms, and parallelism strategies.

1 Introduction

The Multilayer Perceptron (MLP) model is an
Artificial Neural Network (ANN) that, in an ex-
tremely abstract sense, resembles how informa-
tion might be received and transformed in an
intelligent biological system like a human brain.
For instance, the firing of a neuron is modeled
mathematically as an activation function asso-
ciated with each unit of the MLP. Additionally,
interneuron connections of a brain are modeled
in MLPs as cross-layer unit pair connections con-
trolled by a weight variable.

We are interested in alternative representa-
tions of inter-unit connections. The reduction of
an interneuron connection into a single indepen-
dent weight variable seems to us to lack certain
features of biological brains, namely spatial re-
lationships of neurons. We have been motivated
to consider if incorporating the notion of spatial
relationships between units yields any benefits.1

1It is pretty unlikely that we are the first to envision
using positions as part of an ANN. However, we (the au-
thor, me, Adrian) are not particularly well-versed in the
vast amount of ANN literature. And so, we make no

We have thus formulated an alternative version
of the MLP in which each node is conceptualized
as a particle with a variable amplitude, phase,
and position in Rn. We refer to our model as
the Particle Network (PN).

Our intent with PNs is not necessarily to make
a model more closely resemble a biological sys-
tem but more of an exploratory study. We are
curious to see if the inter-unit connections in PNs
might self-organize into interesting clusters or
structures, which may be useful for visualization
and/or model interpretation—contrasting to the
near non-interpretability of weights in MLPs. If
such structures appear regularly as part of op-
timized PNs, it may be possible that one could
pre-construct PNs with common structural mo-
tifs when fitting a new PN to potentially enhance
deep learning, similar to starting with trained
autoencoders followed by fine tuning with a deep
MLP. Also, PNs could be used as an alterna-
tive in the “fully connected” layers often seen

claim of novelty here but do claim to have arrived at this
idea independently (and näıvely). Others may have come
up with similar models, but we still felt like writing a up
study about it anyway.

1

in deep convolution networks and recurrent ne-
toworks. Or, since convolution/recurrent layers
are ultimately abstractions of MLPs, one could
imagine using PNs as the foundation for convolu-
tion/recurrent layers instead (e.g. a convolution
filter based on a PN as opposed to a MLP).

Furthermore, there may exist certain reusable
or optimized sets of pairwise kernels and param-
eters for PNs, much like the force fields used
widely in the field of molecular mechanics simu-
lations. Also along such lines, PNs could maybe
benefit from certain algorithmic approaches fre-
quently used in N -body simulations, such as dis-
tance cutoffs or Fast Multipole Methods, to re-
duce computational cost to O(N logN).

We present the formulation of the PN model
in the following section, including its analytic
gradient (i.e., backpropagation gradient) and an
overview of the algorithm we have used to im-
plement it with reasonable efficiency. We then
in Section 3 perform an experiment with a PN
on the commonly studied MNIST digit dataset.
Comparisons are drawn between PNs and MLPs
and discussed throughout this work.

In summary of what follows, we claim that
PNs potentially offer these benefits:

• O(N) number of parameters and memory
cost with respect to number of units in each
layer.

• O(N logN) computational cost if imple-
mented with a Fast Multipole Method ap-
proach.

• Reduced computational cost with distance
cutoffs, potentially scaling roughly linearly
(e.g. with neighbor lists). Can be used in
combination with domain decomposition in
parallelism strategies.

• Automatic feature clustering in spatial di-
mensions, which can be useful for interpre-
tation and/or for pruning less important
features (or units) in the network.

2 Model Formulation and
Implementation

We briefly review the formulation of MLPs be-
fore introducing the formulation of Particle Net-
works in order to make clear comparisons. We
follow the notation of Graves [] as much as pos-
sible.

2.1 Multilayer Perceptron Formu-
lation

Consider a hidden unit h in a MLP with acti-
vation function θh that is connected to I input
units, each with input data xi. The output bh is
given by the activation function applied to the
weighted sum

ah =

I∑
i

wihxi (1)

bh = θh(ah) (2)

where wij is the weight between unit i and unit
j. It is common practice to include an additional
fixed input x0 = 1 such that the weight w0h con-
stitutes a constant offset, or bias term. The out-
put of each hidden unit is propagated forward
recursively to the l-th layer hidden layer Hl

ah =
∑

h′∈Hl−1

wh′hbh′ (3)

A bias term may also be included in Eq. 3. The
output layer of a MLP, with units ak for K out-
put units, follows similar to Eq. 3. The output
layer generally may employ any activation func-
tion, though it is typical for classification prob-
lems to chose the so-called softmax function to
yield output class probabilities, yk,

yk =
eak∑K
k′ e

ak′
(4)

Finally, a loss function L(x, z) is chosen to score
the accuracy of the MLP mapping of input x
to predicted output y against the true value z

2

to which the MLP is fit. Several choices for loss
function exist, but when fitting a MLP to predict
multiple class output, the preferred choice is the
categorical cross-entropy function

L(x, z) = −
K∑
k

zkln(yk) (5)

To fit a MLP for a supervised learning prob-
lem, the loss function is minimized, which can be
accomplished in a number of ways but most often
through a gradient-based approach, like stochas-
tic gradient descent. The gradient of the loss
function with respect to each unit’s weights is
computed via the backpropagation technique in-
volving a backward pass of information through
the network. For a MLP employing the cate-
gorical cross entropy loss function [Eq. 5] in con-
junction with an output layer softmax activation
function [Eq. 4], one has

∂L
∂ak

= yk − zk (6)

For the output layer, Then, one can recursively
compute the following quantity at each layer
(and similarly for the output layer)

δh =
∂L(x, z)

∂ah
= θ′h(ah)

∑
h′∈Hl+1

δh′whh′ (7)

where θ′(ah) is the function dθ(a)/da. Eq. 7
then enters the gradient for each unit through
the chain rule:

∂L
∂wij

=
∂L(x, z)

∂aj

∂aj
∂wij

= δjbi (8)

2.2 Particle Network Formulation

The central concept of a Particle Network (PN)
is to consider letting each h-th unit of a MLP be
given a single amplitude (or weight) qh, a phase
φh, and a position ~rh in Rn. We choose for the
remainder of this work to simply use three di-
mensional Euclidean space, R3.2 We then allow

2It is entirely conceivable to make other choices, such
as R2 or, say, hyperbolic space, if that’s your thing.

the particles (or units) of layer l to interact in a
pairwise fashion with the particles of layer l + 1
as follows,

ah = qh
∑

h′∈Hl−1

k(~rh, ~rh′ , φh, φh′)bh′ (9)

The pairwise kernel function,
k(~rh, ~rh′ , φh, φh′) = khh′ , can generally be
any function to couple the coordinates and
phases of particles h and h′. For now, we sug-
gest a function that decreases as inter-particle
distance increases, does not diverge at zero
distance, and is modulated by the relative
phase of the particles. In this work, we select
a product of a Gaussian function and a cosine
function as our kernel:

khh′ = e−|~rh−~rh′ |
2

cos (φh − φh′) (10)

In addition to Eq. 9, we treat the input layer
specially such that it too carries a phase, and
position but that it’s amplitude is simply the in-
put data:

ai = bi = xi for i ∈ I (11)

Eqs. 9 and 11 along with the choice of a kernel,
like Eq. 10, constitute the major variation of a
PN from the usual MLP. All other features of
the MLP are assumed to be the same in a PN,
such as the use of activation functions θh.

The gradient of a PN can then be derived and
adapted into backpropagation with the follow-
ing:

∂ah
∂qh

=
∑

h′∈Hl−1

k(~rh, ~rh′)bh′ (12)

∂ai
∂qi

= xi for i ∈ I (13)

∂ah
∂~rh

=
∑

h′∈Hl−1

bh′
∂k(~rh, ~rh′)

∂~rh
(14)

∂khh′

∂~rh
= −2e−|~rh−~rh′ |

2

cos (φh − φh′)(~rh − ~rh′)
(15)

∂khh′

∂φh
= −e−|~rh−~rh′ |

2

sin (φh − φh′) (16)

3

By symmetry of the pairwise kernel (i.e., New-
ton’s 3rd Law), we have

∂ah
∂~rh′

= −
∑

h′∈Hl−1

bh′
∂khh′

∂~rh
(17)

and
∂ah
∂φh′

= −
∑

h′∈Hl−1

bh′
∂khh′

∂φh
(18)

which can also be applied to the input layer by
letting h′ → i and Hl−1 → I. Thus, the modified
version of Eq. 7 for a PN is

δh =
∂L(x, z)

∂ah
= θ′h(ah)

∑
h′∈Hl+1

δh′qh′k(~rh, ~rh′)

(19)
The loss function gradient with respect to am-
plitudes is then

∂L
∂qh

=
∂L(x, z)

∂ah

∂ah
∂qh

= δhah/qh (20)

∂L
∂qi

=
∂L(x, z)

∂ai

∂ai
∂qi

= δixi (21)

For the loss function gradient with respect to
position, one must be careful to sum Eq. 14 and
Eq. 18 across each layer in which the h-th par-
ticle’s position appears. For example, for unit
h with h ∈ Hl and h′ ∈ Hl+1. The position
gradients are

∂L
∂~rh

=
∂L(x, z)

∂ah

∂ah
∂~rh

+
∑

h′∈Hl+1

∂L(x, z)

∂ah′

∂ah′

∂~rh

(22)
which, for completeness, can be expanded by
substitution of the above equations into each
term

∂L(x, z)

∂ah

∂ah
∂~rh

= δh
∑

h′′∈Hl−1

bh′′
∂k(~rh, ~rh′′)

∂~rh
(23)

∂L(x, z)

∂ah′

∂ah′

∂~rh
= −δh′

∑
h′′∈Hl+1

bh′′
∂k(~rh, ~rh′′)

∂~rh

(24)

For the input layer, having no layer preceding it,
Eq. 22 is reduced to

∂L
∂~ri

=
∑

h∈Hl+1

∂L(x, z)

∂ah

∂ah
∂~ri

(25)

which can be computed similar to Eq. 24.
Similar equations are derived for the phase

gradients:

∂L
∂φh

=
∂L(x, z)

∂ah

∂ah
∂φh

+
∑

h′∈Hl+1

∂L(x, z)

∂ah′

∂ah′

∂φh

(26)
∂L
∂φi

=
∑

h∈Hl+1

∂L(x, z)

∂ah

∂ah
∂φi

(27)

2.3 Particle Network Implementa-
tion

The equations for the PN model appear some-
what daunting at first glance in comparison to
the MLP model, but their implementation in
code is more straightforward than might appear.
We have implemented the PN model (for ar-
bitrary number of units and layers) in our ex-
perimental neural network code, called Calris-
sian (available on GitHub []), which is written
in Python and makes heavy use of the NumPy
library for efficient vectorized computation.

2.3.1 Linear Scaling Memory and Com-
putational Complexity

An interesting feature of PNs is that it does
not explicitly require storing weight matrices in
memory for each layer (or weight vectors per
unit, depending on implementation) like a MLP
does. In fact, one can recover MLP weights from
PNs by setting

qjkij → wij (28)

where wij is the corresponding MLP weight
from 3.3 In other words, one may interpret PNs

3It is not clear to use at this point that the reverse
mapping from MLP weight to PN amplitude, phase, and
position is always uniquely defined or computable.

4

as a decomposition of MLP weights into a prod-
uct of amplitude and a position and phase de-
pendent kernel function.

In PNs, one could explicitly construct a dis-
tance/relative phase matrix (or the full pairwise
kernel matrix) and yield the same memory re-
quirement of MLPs, but this is not strictly nec-
essary. A more memory efficient approach for
PNs is to implicitly build these matrices elemen-
twise by computing kij on-the-fly as needed and
subsequently discarding the value from memory
when the matrix element is no longer needed.

With such an implementation, the total num-
ber of free parameters to be fit for a PN in R3 is
given by

4NI + 6NK +

L∑
l=0

6Nl (29)

where NI is the number of input layer units, NK
is the number of output layer units, and Nl is
the number of units in the l-th hidden layer. NI
and NK are fixed by the problem domain, which
leaves Nl as the number which determines scal-
ing of number of parameters. Thus, we see that
the number of parameters (and the memory re-
quired to store them) scales linearly with respect
to the number of hidden units for any l and in-
dependently of the number of parameters in any
other layer.

For comparison, the total number of free pa-
rameters (weights and biases) to be fit in a MLP
is given by

(NI+1)N0+(NL+1)NK+

L∑
l=1

(Nl−1+1)Nl (30)

Note that the “plus one” appearing in each term
is accounts for the bias parameter in each unit.
Here we see that the number of parameters scales
like O(Nl−1Nl + NlNl+1), which technically is
linear with respect to Nl but with possibly large
Nl−1 or Nl+1 prefactors. That is, increasing
Nl results in an overall parameter increase de-
pendent on both Nl−1 and Nl+1. If we assume
Nl−1 ∼ Nl, then we have that the number of
parameters in MLPs scales as roughly quadratic
with respect to the number of hidden units.

In other words, MLPs require an explicit pa-
rameter to modulate each inter-unit connection,
whereas in PNs the inter-unit connection is mod-
ulated implicitly via spatial relationships of the
units. The result is that PNs can model the same
number of connections as MLPs—requiring the
same overall computational complexity scaling—
but with far fewer (linear scaling number of) pa-
rameters/memory.

Linear scaling memory could be a potentially
useful feature of PNs in parallelization strategies
requiring communication of parameters across
distributed memory and/or between CPU and
GPU memory. The latter is sometimes cited as a
concerning bottleneck when using GPUs for par-
allelization, and having to transfer a linear scal-
ing amount of memory as opposed to a quadratic
scaling amount of memory could yield a perfor-
mance boost. Or, one might possibly be able to
squeeze larger/deeper PN networks on a GPU.
Experiments will be needed to evaluate such a
claim, of course, as well as to understand the
balance of memory benefit and model predictive
power.

PNs, however, require more floating point op-
erations than MLPs per inter-unit connection.
On the other hand, PNs might be able to exploit
spatial sparsity to reduce computational com-
plexity by invoking distance cutoffs, wherein be-
yond a certain threshold distance where the ker-
nel is approximately zero, one ignores the inter-
unit connection computation. Cutoffs can yield
O(N) computational scaling in N-body simula-
tions provided the particles maintain a roughly
homogeneous spatial distribution, which may
not be likely in PNs. Alternatively, Fast Mul-
tipole Methods and/or domain decomposition
could possibly be used to achieve O(Nl−1 logNl)
complexity per input datum and/or scalable
model parallelization, respectively. This is to be
compared to the dense matrix-vector multipli-
cation of MLPs, which is O(Nl−1Nl) per input
datum (or per forward/backward pass). Again,
the realization of any of these claimed potential
benefits will need experimental evidence as sup-
port.

5

2.3.2 Forward Pass

The forward pass of a PN proceeds quite similar
to that of an MLP forward pass. To take advan-
tage of linear scaling memory, though, we need
to structure the algorithm in such a way that
each element of the kernel matrix computed on-
the-fly is available for each input instance. See
Algorithm 1, which saves wij in memory only for
the innermost loop over the ND input instances
of data. Of course, if the feed forward procedure
were being called many times for a constant set
of PN parameters, it might be useful to explic-
itly cache wij as a matrix rather than recompute
for every forward pass. But, for PN learning, the
parameters change with every update in the op-
timization algorithm, defeating the purpose of
caching. Naturally, it is up to the developer to
decide if caching is appropriate or not.

Algorithm 1 PN Forward Pass for input data
set with ND instances

procedure ForwardPass
for i ∈ input, n ∈ ND instances do

bni = xni
end for
for l ∈ Hl do

a = 0
for i ∈ l − 1, j ∈ l do

wij = qjkij
for n ∈ ND do

anj = anj + wijb
n
i

end for
end for
b = θl(a)

end for
return b

end procedure

2.3.3 Backpropagation

To compute the analytic gradient of a PN, one
can apply the backpropagation technique as is
done in MLPs. Like the forward pass, PN back-
propagation can be written in such a way as

to avoid explicit construction of matrices (Al-
gorithm 2). Much like MLP backpropagation, a
forward pass is first performed to compute the
activations of each layer. Then, a backward pass
is performed in which the gradient information
of one layer is passed back to previous layers re-
cursively. As with the forward pass, the loops
can be structured so as to avoid explicit matrix
construction.

Algorithm 2 PN Backpropagation for input
data set with ND instances

procedure Backpropagation
ForwardPass to compute b, θ′(a) ∀ l ∈ Hl

for k ∈ K, n ∈ ND do
δnk = ynk − znk

end for
l = L
while l >= 0 do

δ′ = 0
for i ∈ l − 1, j ∈ l do

wij = qjkij
for n ∈ N do

δ′
n
i = δ′

n
i + θ′(ai)wijδ

n
j

∂qLlj = ∂qLlj + k(~ri, ~rj)
∑
n b

n
i δ
n
j

∆~rj =
∑
n ∂~rjkijb

n
i δ
n
j

∂~rLlj = ∂~rLlj + ∆~rj

∂~rLli = ∂~rLli −∆~rj

∆φj =
∑
n ∂φj

kijb
n
i δ
n
j

∂φLlj = ∂φLlj + ∆φj

∂φLli = ∂φLli −∆φj

end for
end for
δ = δ′

l = l − 1
end while
for j ∈ linput do

∂qL
linput

j = ∂qL
linput

j +
∑
n b

n
j δ
n
j

end for
return ∂qL, ∂~rL

end procedure

6

3 Experiment

Experiment
MNIST digits with no augmentation.

4 Discussion

This is a discussion.
Fewer parameters, less likely to overfit. Over-

fitting a concern with so many parameters. Cite
AlexNet paper. Mention Circulant matrix pa-
per. Limited to be square matrix; use cutoffs
and/or zero filling to fake out rectangular ma-
trix. (This is not an issue in PNs)

Connections in PNs a bit weaker for fitting
than connections in MLPs. May require more
connections to be comparable to MLPs. Trade-
off.

5 Conclusions

This is a conclusion.

6 Appendix: Modified
Rprop algorithm

Describe modified Rprop algorithm used for fit-
ting.

7

